No Arabic abstract
The modular (or entanglement) Hamiltonian correspondent to the half-space-bipartition of a quantum state uniquely characterizes its entanglement properties. However, in the context of lattice models, its explicit form is analytically known only for the Ising chain and certain free theories in one-dimension. In this work, we provide a throughout investigation of entanglement Hamiltonians in lattice models obtained via the Bisognano-Wichmann theorem, which provides an explicit functional form for the entanglement Hamiltonian itself in quantum field theory. Our study encompasses a variety of one- and two-dimensional models, supporting diverse quantum phases and critical points, and, most importantly, scanning several universality classes, including Ising, Potts, and Luttinger liquids. We carry out extensive numerical simulations based on the density-matrix-renormalization-group method, exact diagonalization, and quantum Monte Carlo. In particular, we compare the exact entanglement properties and correlation functions to those obtained applying the Bisognano-Wichmann theorem on the lattice. We carry out this comparison on both the eigenvalues and eigenvectors of the entanglement Hamiltonian, and expectation values of correlation functions and order parameters. Our results evidence that, as long as the low-energy description of the lattice model is well-captured by a Lorentz-invariant quantum field theory, the Bisognano-Wichmann theorem provides a qualitatively and quantitatively accurate description of the lattice entanglement Hamiltonian. The resulting framework paves the way to direct studies of entanglement properties utilizing well-established statistical mechanics methods and experiments.
We develop a general framework to compute the scaling of entanglement entropy in inhomogeneous one-dimensional quantum systems belonging to the Luttinger liquid universality class. While much insight has been gained in homogeneous systems by making use of conformal field theory techniques, our focus is on systems for which the Luttinger parameter $K$ depends on position, and conformal invariance is broken. An important point of our analysis is that contributions stemming from the UV cutoff have to be treated very carefully, since they now depend on position. We show that such terms can be removed either by considering regularized entropies specifically designed to do so, or by tabulating numerically the cutoff, and reconstructing its contribution to the entropy through the local density approximation. We check our method numerically in the spin-1/2 XXZ spin chain in a spatially varying magnetic field, and find excellent agreement.
We establish some general dynamical properties of lattice many-body systems that are subject to a high-frequency periodic driving. We prove that such systems have a quasi-conserved extensive quantity $H_*$, which plays the role of an effective static Hamiltonian. The dynamics of the system (e.g., evolution of any local observable) is well-approximated by the evolution with the Hamiltonian $H_*$ up to time $tau_*$, which is exponentially long in the driving frequency. We further show that the energy absorption rate is exponentially small in the driving frequency. In cases where $H_*$ is ergodic, the driven system prethermalizes to a thermal state described by $H_*$ at intermediate times $tlesssim tau_*$, eventually heating up to an infinite-temperature state at times $tsim tau_*$. Our results indicate that rapidly driven many-body systems generically exhibit prethermalization and very slow heating. We briefly discuss implications for experiments which realize topological states by periodic driving.
We solve the non-stationary Schrodinger equation for several time-dependent Hamiltonians, such as the BCS Hamiltonian with an interaction strength inversely proportional to time, periodically driven BCS and linearly driven inhomogeneous Dicke models as well as various multi-level Landau-Zener tunneling models. The latter are Demkov-Osherov, bow-tie, and generalized bow-tie models. We show that these Landau-Zener problems and their certain interacting many-body generalizations map to Gaudin magnets in a magnetic field. Moreover, we demonstrate that the time-dependent Schrodinger equation for the above models has a similar structure and is integrable with a similar technique as Knizhnikov-Zamolodchikov equations. We also discuss applications of our results to the problem of molecular production in an atomic Fermi gas swept through a Feshbach resonance and to the evaluation of the Landau-Zener transition probabilities.
We present a worm-type Monte Carlo study of several typical models in the three-dimensional (3D) U(1) universality class, which include the classical 3D XY model in the directed flow representation and its Villain version, as well as the 2D quantum Bose-Hubbard (BH) model with unitary filling in the imaginary-time world-line representation. From the topology of the configurations on a torus, we sample the superfluid stiffness $rho_s$ and the dimensionless wrapping probability $R$. From the finite-size scaling analyses of $rho_s$ and of $R$, we determine the critical points as $T_c ({rm XY}) =2.201, 844 ,1(5)$ and $T_c ({rm Villain})=0.333, 067, 04(7)$ and $(t/U)_c ({rm BH})=0.059 , 729 ,1(8)$, where $T$ is the temperature for the classical models, and $t$ and $U$ are respectively the hopping and on-site interaction strength for the BH model. The precision of our estimates improves significantly over that of the existing results. Moreover, it is observed that at criticality, the derivative of a wrapping probability with respect to $T$ suffers from negligible leading corrections and enables a precise determination of the correlation length critical exponent as $ u=0.671 , 83(18)$. In addition, the critical exponent $eta$ is estimated as $eta=0.038 , 53(48)$ by analyzing a susceptibility-like quantity. We believe that these numerical results would provide a solid reference in the study of classical and quantum phase transitions in the 3D U(1) universality, including the recent development of the conformal bootstrap method.
We investigate an unconventional symmetry in time-periodically driven systems, the Floquet dynamical symmetry (FDS). Unlike the usual symmetries, the FDS gives symmetry sectors that are equidistant in the Floquet spectrum and protects quantum coherence between them from dissipation and dephasing, leading to two kinds of time crystals: the discrete time crystal and discrete time quasicrystal that have different periodicity in time. We show that these time crystals appear in the Bose- and Fermi-Hubbard models under ac fields and their periodicity can be tuned only by adjusting the strength of the field. These time crystals arise only from the FDS and thus appear in both dissipative and isolated systems and in the presence of disorder as long as the FDS is respected. We discuss their experimental realizations in cold atom experiments and generalization to the SU($N$)-symmetric Hubbard models.