Parallelization of the multi-level hp-adaptive finite cell method


Abstract in English

The multi-level hp-refinement scheme is a powerful extension of the finite element method that allows local mesh adaptation without the trouble of constraining hanging nodes. This is achieved through hierarchical high-order overlay meshes, a hp-scheme based on spatial refinement by superposition. An efficient parallelization of this method using standard domain decomposition approaches in combination with ghost elements faces the challenge of a large basis function support resulting from the overlay structure and is in many cases not feasible. In this contribution, a parallelization strategy for the multi-level hp-scheme is presented that is adapted to the schemes simple hierarchical structure. By distributing the computational domain among processes on the granularity of the active leaf elements and utilizing shared mesh data structures, good parallel performance is achieved, as redundant computations on ghost elements are avoided. We show the schemes parallel scalability for problems with a few hundred elements per process. Furthermore, the scheme is used in conjunction with the finite cell method to perform numerical simulations on domains of complex shape.

Download