Do you want to publish a course? Click here

Quantum generative adversarial network for generating discrete distribution

69   0   0.0 ( 0 )
 Added by Haozhen Situ
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Quantum machine learning has recently attracted much attention from the community of quantum computing. In this paper, we explore the ability of generative adversarial networks (GANs) based on quantum computing. More specifically, we propose a quantum GAN for generating classical discrete distribution, which has a classical-quantum hybrid architecture and is composed of a parameterized quantum circuit as the generator and a classical neural network as the discriminator. The parameterized quantum circuit only consists of simple one-qubit rotation gates and two-qubit controlled-phase gates that are available in current quantum devices. Our scheme has the following characteristics and potential advantages: (i) It is intrinsically capable of generating discrete data (e.g., text data), while classical GANs are clumsy for this task due to the vanishing gradient problem. (ii) Our scheme avoids the input/output bottlenecks embarrassing most of the existing quantum learning algorithms that either require to encode the classical input data into quantum states, or output a quantum state corresponding to the solution instead of giving the solution itself, which inevitably compromises the speedup of the quantum algorithm. (iii) The probability distribution implicitly given by data samples can be loaded into a quantum state, which may be useful for some further applications.



rate research

Read More

Tremendous progress has been witnessed in artificial intelligence, where neural network backed deep learning systems have been used, with applications in almost every domain. As a representative deep learning framework, Generative Adversarial Network (GAN) has been widely used for generating artificial images, text-to-image or image augmentation across areas of science, arts and video games. However, GANs are computationally expensive, sometimes computationally prohibitive. Furthermore, training GANs may suffer from convergence failure and modal collapse. Aiming at the acceleration of use cases for practical quantum computers, we propose QuGAN, a quantum GAN architecture that provides stable convergence, quantum-states based gradients and significantly reduced parameter sets. The QuGANarchitecture runs both the discriminator and the generator purely on quantum state fidelity and utilizes the swap test on qubits to calculate the values of quantum-based loss functions. Built on quantum layers, QuGAN achieves similar performance with a 94.98% reduction on the parameter set when compared to classical GANs. With the same number of parameters, addition-ally, QuGAN outperforms state-of-the-art quantum based GANsin the literature providing a 48.33% improvement in system performance compared to others attaining less than 0.5% in terms of similarity between generated distributions and original data sets.
Generative adversarial networks are an emerging technique with wide applications in machine learning, which have achieved dramatic success in a number of challenging tasks including image and video generation. When equipped with quantum processors, their quantum counterparts--called quantum generative adversarial networks (QGANs)--may even exhibit exponential advantages in certain machine learning applications. Here, we report an experimental implementation of a QGAN using a programmable superconducting processor, in which both the generator and the discriminator are parameterized via layers of single- and multi-qubit quantum gates. The programmed QGAN runs automatically several rounds of adversarial learning with quantum gradients to achieve a Nash equilibrium point, where the generator can replicate data samples that mimic the ones from the training set. Our implementation is promising to scale up to noisy intermediate-scale quantum devices, thus paving the way for experimental explorations of quantum advantages in practical applications with near-term quantum technologies.
Generative adversarial networks (GANs) are one of the most widely adopted semisupervised and unsupervised machine learning methods for high-definition image, video, and audio generation. In this work, we propose a new type of architecture for quantum generative adversarial networks (entangling quantum GAN, EQ-GAN) that overcomes some limitations of previously proposed quantum GANs. Leveraging the entangling power of quantum circuits, EQ-GAN guarantees the convergence to a Nash equilibrium under minimax optimization of the discriminator and generator circuits by performing entangling operations between both the generator output and true quantum data. We show that EQ-GAN has additional robustness against coherent errors and demonstrate the effectiveness of EQ-GAN experimentally in a Google Sycamore superconducting quantum processor. By adversarially learning efficient representations of quantum states, we prepare an approximate quantum random access memory (QRAM) and demonstrate its use in applications including the training of quantum neural networks.
This chapter reviews recent developments of generative adversarial networks (GAN)-based methods for medical and biomedical image synthesis tasks. These methods are classified into conditional GAN and Cycle-GAN according to the network architecture designs. For each category, a literature survey is given, which covers discussions of the network architecture designs, highlights important contributions and identifies specific challenges.
Quantum machine learning is expected to be one of the first practical applications of near-term quantum devices. Pioneer theoretical works suggest that quantum generative adversarial networks (GANs) may exhibit a potential exponential advantage over classical GANs, thus attracting widespread attention. However, it remains elusive whether quantum GANs implemented on near-term quantum devices can actually solve real-world learning tasks. Here, we devise a flexible quantum GAN scheme to narrow this knowledge gap, which could accomplish image generation with arbitrarily high-dimensional features, and could also take advantage of quantum superposition to train multiple examples in parallel. For the first time, we experimentally achieve the learning and generation of real-world hand-written digit images on a superconducting quantum processor. Moreover, we utilize a gray-scale bar dataset to exhibit the competitive performance between quantum GANs and the classical GANs based on multilayer perceptron and convolutional neural network architectures, respectively, benchmarked by the Frechet Distance score. Our work provides guidance for developing advanced quantum generative models on near-term quantum devices and opens up an avenue for exploring quantum advantages in various GAN-related learning tasks.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا