VLA 1623$-$2417 is a triple protostellar system deeply embedded in Ophiuchus A. Sources A and B have a separation of 1.1, making their study difficult beyond the submillimeter regime. Lack of circumstellar gas emission suggested that VLA 1623$-$2417 B has a very cold envelope and is much younger than source A, generally considered the prototypical Class 0 source. We explore the consequences of new ALMA Band 9 data on the spectral energy distribution (SED) of VLA 1623$-$2417 and their inferred nature. Using dust continuum observations spanning from centimeter to near-infrared wavelengths, the SED of each component in VLA 1623$-$2417 is constructed and analysed. The ALMA Band 9 data presented here show that the SED of VLA 1623$-$2417 B does not peak at 850 $mu$m as previously expected, but instead presents the same shape as VLA 1623$-$2417 A at wavelengths shorter than 450 $mu$m. The results presented here indicate that the previous assumption that the flux in $Herschel$ and Spitzer observations is solely dominated by VLA 1623$-$2417 A is not valid, and instead, VLA 1623$-$2417 B most likely contributes a significant fraction of the flux at $lambda~<$ 450 $mu$m. These results, however, do not explain the lack of circumstellar gas emission and puzzling nature of VLA 1623$-$2417 B.