Do you want to publish a course? Click here

Harnessing AI for Speech Reconstruction using Multi-view Silent Video Feed

50   0   0.0 ( 0 )
 Added by Yaman Kumar
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Speechreading or lipreading is the technique of understanding and getting phonetic features from a speakers visual features such as movement of lips, face, teeth and tongue. It has a wide range of multimedia applications such as in surveillance, Internet telephony, and as an aid to a person with hearing impairments. However, most of the work in speechreading has been limited to text generation from silent videos. Recently, research has started venturing into generating (audio) speech from silent video sequences but there have been no developments thus far in dealing with divergent views and poses of a speaker. Thus although, we have multiple camera feeds for the speech of a user, but we have failed in using these multiple video feeds for dealing with the different poses. To this end, this paper presents the worlds first ever multi-view speech reading and reconstruction system. This work encompasses the boundaries of multimedia research by putting forth a model which leverages silent video feeds from multiple cameras recording the same subject to generate intelligent speech for a speaker. Initial results confirm the usefulness of exploiting multiple camera views in building an efficient speech reading and reconstruction system. It further shows the optimal placement of cameras which would lead to the maximum intelligibility of speech. Next, it lays out various innovative applications for the proposed system focusing on its potential prodigious impact in not just security arena but in many other multimedia analytics problems.



rate research

Read More

In this study, we propose a deep neural network for reconstructing intelligible speech from silent lip movement videos. We use auditory spectrogram as spectral representation of speech and its corresponding sound generation method resulting in a more natural sounding reconstructed speech. Our proposed network consists of an autoencoder to extract bottleneck features from the auditory spectrogram which is then used as target to our main lip reading network comprising of CNN, LSTM and fully connected layers. Our experiments show that the autoencoder is able to reconstruct the original auditory spectrogram with a 98% correlation and also improves the quality of reconstructed speech from the main lip reading network. Our model, trained jointly on different speakers is able to extract individual speaker characteristics and gives promising results of reconstructing intelligible speech with superior word recognition accuracy.
Multi-channel speech enhancement aims to extract clean speech from a noisy mixture using signals captured from multiple microphones. Recently proposed methods tackle this problem by incorporating deep neural network models with spatial filtering techniques such as the minimum variance distortionless response (MVDR) beamformer. In this paper, we introduce a different research direction by viewing each audio channel as a node lying in a non-Euclidean space and, specifically, a graph. This formulation allows us to apply graph neural networks (GNN) to find spatial correlations among the different channels (nodes). We utilize graph convolution networks (GCN) by incorporating them in the embedding space of a U-Net architecture. We use LibriSpeech dataset and simulate room acoustics data to extensively experiment with our approach using different array types, and number of microphones. Results indicate the superiority of our approach when compared to prior state-of-the-art method.
The front-end module in multi-channel automatic speech recognition (ASR) systems mainly use microphone array techniques to produce enhanced signals in noisy conditions with reverberation and echos. Recently, neural network (NN) based front-end has shown promising improvement over the conventional signal processing methods. In this paper, we propose to adopt the architecture of deep complex Unet (DCUnet) - a powerful complex-valued Unet-structured speech enhancement model - as the front-end of the multi-channel acoustic model, and integrate them in a multi-task learning (MTL) framework along with cascaded framework for comparison. Meanwhile, we investigate the proposed methods with several training strategies to improve the recognition accuracy on the 1000-hours real-world XiaoMi smart speaker data with echos. Experiments show that our proposed DCUnet-MTL method brings about 12.2% relative character error rate (CER) reduction compared with the traditional approach with array processing plus single-channel acoustic model. It also achieves superior performance than the recently proposed neural beamforming method.
294 - Huiyan Li , Haohong Lin , You Wang 2021
Silent Speech Decoding (SSD) based on Surface electromyography (sEMG) has become a prevalent task in recent years. Though revolutions have been proposed to decode sEMG to audio successfully, some problems still remain. In this paper, we propose an optimized sequence-to-sequence (Seq2Seq) approach to synthesize voice from subvocal sEMG. Both subvocal and vocal sEMG are collected and preprocessed to provide data information. Then, we extract durations from the alignment between subvocal and vocal signals to regulate the subvocal sEMG following audio length. Besides, we use phoneme classification and vocal sEMG reconstruction modules to improve the model performance. Finally, experiments on a Mandarin speaker dataset, which consists of 6.49 hours of data, demonstrate that the proposed model improves the mapping accuracy and voice quality of reconstructed voice.
Text-to-speech (TTS) acoustic models map linguistic features into an acoustic representation out of which an audible waveform is generated. The latest and most natural TTS systems build a direct mapping between linguistic and waveform domains, like SampleRNN. This way, possible signal naturalness losses are avoided as intermediate acoustic representations are discarded. Another important dimension of study apart from naturalness is their adaptability to generate voice from new speakers that were unseen during training. In this paper we first propose the use of problem-agnostic speech embeddings in a multi-speaker acoustic model for TTS based on SampleRNN. This way we feed the acoustic model with speaker acoustically dependent representations that enrich the waveform generation more than discrete embeddings unrelated to these factors. Our first results suggest that the proposed embeddings lead to better quality voices than those obtained with discrete embeddings. Furthermore, as we can use any speech segment as an encoded representation during inference, the model is capable to generalize to new speaker identities without retraining the network. We finally show that, with a small increase of speech duration in the embedding extractor, we dramatically reduce the spectral distortion to close the gap towards the target identities.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا