Do you want to publish a course? Click here

Survey of Graph Analysis Applications

63   0   0.0 ( 0 )
 Added by Tim Hegeman
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Recently, many systems for graph analysis have been developed to address the growing needs of both industry and academia to study complex graphs. Insight into the practical uses of graph analysis will allow future developments of such systems to optimize for real-world usage, instead of targeting single use cases or hypothetical workloads. This insight may be derived from surveys on the applications of graph analysis. However, existing surveys are limited in the variety of application domains, datasets, and/or graph analysis techniques they study. In this work we present and apply a systematic method for identifying practical use cases of graph analysis. We identify commonly used graph features and analysis methods and use our findings to construct a taxonomy of graph analysis applications. We conclude that practical use cases of graph analysis cover a diverse set of graph features and analysis methods. Furthermore, most applications combine multiple features and methods. Our findings motivate further development of graph analysis systems to support a broader set of applications and to facilitate the combination of multiple analysis methods in an (interactive) workflow.



rate research

Read More

Outliers are samples that are generated by different mechanisms from other normal data samples. Graphs, in particular social network graphs, may contain nodes and edges that are made by scammers, malicious programs or mistakenly by normal users. Detecting outlier nodes and edges is important for data mining and graph analytics. However, previous research in the field has merely focused on detecting outlier nodes. In this article, we study the properties of edges and propose outlier edge detection algorithms using two random graph generation models. We found that the edge-ego-network, which can be defined as the induced graph that contains two end nodes of an edge, their neighboring nodes and the edges that link these nodes, contains critical information to detect outlier edges. We evaluated the proposed algorithms by injecting outlier edges into some real-world graph data. Experiment results show that the proposed algorithms can effectively detect outlier edges. In particular, the algorithm based on the Preferential Attachment Random Graph Generation model consistently gives good performance regardless of the test graph data. Further more, the proposed algorithms are not limited in the area of outlier edge detection. We demonstrate three different applications that benefit from the proposed algorithms: 1) a preprocessing tool that improves the performance of graph clustering algorithms; 2) an outlier node detection algorithm; and 3) a novel noisy data clustering algorithm. These applications show the great potential of the proposed outlier edge detection techniques.
Measuring graph clustering quality remains an open problem. To address it, we introduce quality measures based on comparisons of intra- and inter-cluster densities, an accompanying statistical test of the significance of their differences and a step-by-step routine for clustering quality assessment. Our null hypothesis does not rely on any generative model for the graph, unlike modularity which uses the configuration model as a null model. Our measures are shown to meet the axioms of a good clustering quality function, unlike the very commonly used modularity measure. They also have an intuitive graph-theoretic interpretation, a formal statistical interpretation and can be easily tested for significance. Our work is centered on the idea that well clustered graphs will display a significantly larger intra-cluster density than inter-cluster density. We develop tests to validate the existence of such a cluster structure. We empirically explore the behavior of our measures under a number of stress test scenarios and compare their behavior to the commonly used modularity and conductance measures. Empirical stress test results confirm that our measures compare very favorably to the established ones. In particular, they are shown to be more responsive to graph structure and less sensitive to sample size and breakdowns during numerical implementation and less sensitive to uncertainty in connectivity. These features are especially important in the context of larger data sets or when the data may contain errors in the connectivity patterns.
The success of a disaster relief and response process is largely dependent on timely and accurate information regarding the status of the disaster, the surrounding environment, and the affected people. This information is primarily provided by first responders on-site and can be enhanced by the firsthand reports posted in real-time on social media. Many tools and methods have been developed to automate disaster relief by extracting, analyzing, and visualizing actionable information from social media. However, these methods are not well integrated in the relief and response processes and the relation between the two requires exposition for further advancement. In this survey, we review the new frontier of intelligent disaster relief and response using social media, show stages of disasters which are reflected on social media, establish a connection between proposed methods based on social media and relief efforts by first responders, and outline pressing challenges and future research directions.
Differential privacy is effective in sharing information and preserving privacy with a strong guarantee. As social network analysis has been extensively adopted in many applications, it opens a new arena for the application of differential privacy. In this article, we provide a comprehensive survey connecting the basic principles of differential privacy and applications in social network analysis. We present a concise review of the foundations of differential privacy and the major variants and discuss how differential privacy is applied to social network analysis, including privacy attacks in social networks, types of differential privacy in social network analysis, and a series of popular tasks, such as degree distribution analysis, subgraph counting and edge weights. We also discuss a series of challenges for future studies.
449 - Xiao Wang , Deyu Bo , Chuan Shi 2020
Heterogeneous graphs (HGs) also known as heterogeneous information networks have become ubiquitous in real-world scenarios; therefore, HG embedding, which aims to learn representations in a lower-dimension space while preserving the heterogeneous structures and semantics for downstream tasks (e.g., node/graph classification, node clustering, link prediction), has drawn considerable attentions in recent years. In this survey, we perform a comprehensive review of the recent development on HG embedding methods and techniques. We first introduce the basic concepts of HG and discuss the unique challenges brought by the heterogeneity for HG embedding in comparison with homogeneous graph representation learning; and then we systemically survey and categorize the state-of-the-art HG embedding methods based on the information they used in the learning process to address the challenges posed by the HG heterogeneity. In particular, for each representative HG embedding method, we provide detailed introduction and further analyze its pros and cons; meanwhile, we also explore the transformativeness and applicability of different types of HG embedding methods in the real-world industrial environments for the first time. In addition, we further present several widely deployed systems that have demonstrated the success of HG embedding techniques in resolving real-world application problems with broader impacts. To facilitate future research and applications in this area, we also summarize the open-source code, existing graph learning platforms and benchmark datasets. Finally, we explore the additional issues and challenges of HG embedding and forecast the future research directions in this field.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا