On a new extension of the zero-divisor graph


Abstract in English

In this paper, we introduce a new graph whose vertices are the nonzero zero-divisors of commutative ring $R$ and for distincts elements $x$ and $y$ in the set $Z(R)^{star}$ of the nonzero zero-divisors of $R$, $x$ and $y$ are adjacent if and only if $xy=0$ or $x+yin Z(R)$. we present some properties and examples of this graph and we study his relation with the zero-divisor graph and with a subgraph of total graph of a commutative ring.

Download