Greens functions for higher order nonlinear equations


Abstract in English

The well-known Greens function method has been recently generalized to nonlinear second order differential equations. In this paper we study possibilities of exact Greens function solutions of nonlinear differential equations of higher order. We show that, if the nonlinear term satisfies a generalized homogeneity property, then the nonlinear Greens function can be represented in terms of the homogeneous solution. Specific examples and a numerical error analysis support the advantage of the method. We show how, for the Bousinesq and Kortweg-de Vries equations, we are forced to introduce higher order Green functions to obtain the solution to the inhomogeneous equation. The method proves to work also in this case supporting our generalization that yields a closed form solution to a large class of nonlinear differential equations, providing also a formula easily amenable to numerical evaluation.

Download