Do you want to publish a course? Click here

Energy loss of a heavy quark in a hot QCD plasma

69   0   0.0 ( 0 )
 Added by Souvik Priyam Adhya
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

In this work we have studied the collisional energy loss of a heavy quark propagating through a high temperature QCD plasma consisting of both heavy and light quarks to leading logarithmic order in the Quantum Chromodynamics (QCD) coupling constant. The formalism adopted in this work shows a significant enhancement for the charm quark energy loss when the bath particles are also considered to be heavy in addition to light quarks. We know the running coupling constant is dependent on the momentum of the particles and the temperature of the system. Therefore, we have presented a comparison of the energy loss of the charm quark due to scattering with another heavy quark with constant and running coupling constant for different temperatures. The results show a substantial increase of the energy loss when compared to the fixed coupling case.



rate research

Read More

We study the energy loss of an energetic heavy quark produced in a high temperature quark-gluon plasma and travelling a finite distance before emerging in the vacuum. While the retardation time of purely collisional energy loss is found to be of the order of the Debye screening length, we find that the contributions from transition radiation and the Ter-Mikayelian effect do not compensate, leading to a reduction of the zeroth order (in an opacity expansion) energy loss.
75 - B. Blok 2020
We study the energy loss of a heavy quark propagating in the Quark-Gluon Plasma (QGP) in the framework of the Moller theory, including possible large Coulomb logarithms as a perturbation to BDMPSZ bremsstrahlung, described in the Harmonic Oscillator (HO) approximation. We derive the analytical expression that describes the energy loss in the entire emitted gluon frequency region. In the small frequencies region, for angles larger than the dead cone angle, the energy loss is controlled by the BDMPSZ mechanism, while for larger frequencies it is described by N=1 term in the GLV opacity expansion. We estimate corresponding quenching rates for different values of the heavy quark path and different $m/E$ ratios.
We investigate the medium induced fragmentation of jets in a high-temperature QCD plasma. Based on an effective kinetic theory of QCD, we study the non-equilibrium evolution of the jet shower and the chemical equilibration of jet fragments in the medium. By including radiative emissions as well as elastic interactions, our approach extends all the way from the jet energy scale to the temperature of the medium and includes important effects such as the recoil of the medium. We present results for the in-medium fragmentation, including chemical and kinetic equilibration of the soft fragments and discuss implications of our result to jet quenching physics and the problem of thermalization of the quark-gluon plasma in heavy ion collisions.
In this paper, we calculate the soft-collisional energy loss of heavy quarks traversing the viscous quark-gluon plasma including the effects of a finite relaxation time $tau_pi$ on the energy loss. We find that the collisional energy loss depends appreciably on $tau_pi$ . In particular, for typical values of the viscosity-to-entropy ratio, we show that the energy loss obtained using $tau_pi$ = 0 can be $sim$ 10$%$ larger than the one obtained using $tau_pi$ = 0. Moreover, we find that the energy loss obtained using the kinetic theory expression for $tau_pi$ is much larger that the one obtained with the $tau_pi$ derived from the Anti de Sitter/Conformal Field Theory correspondence. Our results may be relevant in the modeling of heavy quark evolution through the quark-gluon plasma.
49 - Y. Hisamatsu , A. Niegawa 1995
We calculate the energy and hydrostatic pressure densities of a hot quark-gluon plasma in thermal equilibrium through diagrammatic analyses of the statistical average, $langle Theta_{mu u} rangle$, of the energy-momentum-tensor operator $Theta_{mu u}$. To leading order at high temperature, the energy density of the long wave length modes is consistently extracted by applying the hard-thermal-loop resummation scheme to the operator-inserted no-leg thermal amplitudes $langle Theta_{mu u} rangle$. We find that, for the long wave length gluons, the energy density, being positive, is tremendously enhanced as compared to the noninteracting case, while, for the quarks, no noticeable deviation from the noninteracting case is found.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا