Do you want to publish a course? Click here

The role of multiple images and model priors in measuring $H_0$ from supernova Refsdal in galaxy cluster MACS J1149.5+2223

72   0   0.0 ( 0 )
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Multiple image gravitational lensing systems with measured time delays provide a promising one-step method for determining $H_0$. MACS J1149, which lenses SN Refsdal into a quad S1-S4, and two other widely separated images, SX and SY, is a perfect candidate. If time delays are pinned down, the remaining uncertainty arises from the mass distribution in the lens. In MACS J1149, the mass in the relevant lens plane region can be constrained by (i) many multiple images, (ii) the mass of the galaxy splitting S1-S4 (which, we show, is correlated with $H_0$), (iii) magnification of SX (also correlated with $H_0$), and (iv) prior assumptions on the mass distribution. Our goal is not to estimate $H_0$, but to understand its error budget, i.e., estimate uncertainties associated with each of these constraints. Using multiple image positions alone, yields very large uncertainty, despite the fact that the position of SX is recovered to within $!le!0.036$ (rms $!le!0.36$) by GRALE lens inversion. Fixing the mass of the galaxy that splits S1-S4 reduces $1sigma$ uncertainties to $sim 23%$, while fixing the magnification of SX yields $1sigma$ uncertainties of $32%$. We conclude that smaller uncertainties, of order few percent, are a consequence of imposing prior assumptions on the shapes of the galaxy and cluster mass distributions, which may or may not apply in a highly non-equilibrium environment of a merging cluster. We propose that if a measurement of $H_0$ is to be considered reliable, it must be supported by a wide range of lens inversion methods.



rate research

Read More

97 - W. Zheng , A. Zitrin , L. Infante 2017
We search for high-redshift dropout galaxies behind the Hubble Frontier Fields (HFF) galaxy cluster MACS J1149.5+2223, a powerful cosmic lens that has revealed a number of unique objects in its field. Using the deep images from the Hubble and Spitzer space telescopes, we find 11 galaxies at z>7 in the MACS J1149.5+2223 cluster field, and 11 in its parallel field. The high-redshift nature of the bright z~9.6 galaxy MACS1149-JD, previously reported by Zheng et al., is further supported by non-detection in the extremely deep optical images from the HFF campaign. With the new photometry, the best photometric redshift solution for MACS1149-JD reduces slightly to z=9.44 +/- 0.12. The young galaxy has an estimated stellar mass of (7 +/- 2)X10E8 Msun, and was formed at z=13.2 +1.9-1.6 when the universe was ~300 Myr old. Data available for the first four HFF clusters have already enabled us to find faint galaxies to an intrinsic magnitude of M(UV) ~ -15.5, approximately a factor of ten deeper than the parallel fields.
We present an analysis of the intracluster light in the Frontier Field Cluster MACS J1149.5+2223 (z=0.544), which combines new and archival Hubble WFC3/IR imaging to provide continuous radial coverage out to 2.8 Mpc from the brightest cluster galaxy. Employing careful treatment of potential systematic biases and using data at the largest radii to determine the background sky level, we reconstruct the surface brightness profile out to a radius of 2 Mpc. This radius is the largest to which the intracluster light (ICL) has been measured for an individual cluster. Within this radius, we measure a total luminosity of 1.5e13 Lsun for the brightest cluster galaxy plus ICL light. From the profile and its logarithmic slope, we identify the transition from the brightest cluster galaxy to ICL at r~70 kpc. Remarkably, we also detect an inflection in the profile centered in the 1.2-1.7 Mpc (0.37-0.52 r200m) radial bin, a signature of an infall caustic in the stellar distribution. Based upon the shape and strength of the feature, we interpret it as potentially being at the splashback radius, although the radius is smaller than theoretical predictions. If this is the splashback radius, then it is the first such detection in the ICL and the first detection of the splashback radius for an individual cluster. Similar analyses should be possible with the other Frontier Field clusters, and eventually with clusters from the Euclid and Roman missions.
Radio halos and relics are Mpc-scale diffuse radio sources in galaxy clusters, with a steep spectral index $alpha>1$ ($Spropto u^{-alpha}$). It has been proposed that they arise from particle acceleration induced by turbulence and weak shocks, injected in the intracluster medium (ICM) during mergers. MACS J1149.5+2223 (MACS J1149) is a high redshift ($z=0.544$) galaxy cluster possibly hosting a radio halo and a relic. We analysed LOFAR, GMRT, and JVLA radio data at 144, 323, 1500 MHz, and Chandra X-ray data to characterise the thermal and non-thermal properties of the cluster. We obtained radio images at different frequencies to investigate the spectral properties of the radio halo. We used Chandra X-ray images to constrain the thermal properties of the cluster. We measured a steep spectrum of the halo, with $alpha=1.49pm 0.12$ between 144 and 1500 MHz. The radio surface brightness distribution across the halo is found to correlate with the X-ray brightness of the ICM, with a sub-linear slope in the range 0.4 to 0.6. We also report two possible cold fronts in north-east and north-west, but deeper X-ray observations are required to firmly constrain the properties of the upstream emission. We show that the combination of high redshift, steep radio spectrum, and sub-linear radio-X scaling of the halo rules out hadronic models. An old ($sim 1 $ Gyr ago) major merger likely induced the formation of the halo through stochastic re-acceleration of relativistic electrons. We suggest that the two possible X-ray discontinuities may actually be part of the same cold front. In this case, the coolest gas pushed towards the north-west might be associated with the cool core of a sub-cluster involved in the major merger. The peculiar orientation of the south-east relic might indicate a different nature of this source and requires further investigation.
We present a gravitational lensing model of MACS J1149.5+2223 using ultra-deep Hubble Frontier Fields imaging data and spectroscopic redshifts from HST grism and VLT/MUSE spectroscopic data. We create total mass maps using 38 multiple images (13 sources) and 608 weak lensing galaxies, as well as 100 multiple images of 31 star-forming regions in the galaxy that hosts Supernova Refsdal. We find good agreement with a range of recent models within the HST field of view. We present a map of the ratio of projected stellar mass to total mass ($f_{star}$), and find that the stellar mass fraction for this cluster peaks on the primary BCG. Averaging within a radius of 0.3 Mpc, we obtain a value of $langle f_{star} rangle = 0.012^{+0.004}_{-0.003}$, consistent with other recent results for this ratio in cluster environments, though with a large global error (up to $delta f_{star} = 0.005$) primarily due to the choice of an IMF. We compare values of $f_{star}$ and measures of star formation efficiency for this cluster to other Hubble Frontier Fields clusters studied in the literature, finding that MACS1149 has a higher stellar mass fraction than these other clusters, but a star formation efficiency typical of massive clusters.
The massive cluster MACSJ1149.5+2223(z=0.544) displays five very large lensed images of a well resolved spiral galaxy at $z_{rm spect}=1.491$. It is within one of these images that the first example of a multiply-lensed supernova has been detected recently as part of the Grism Lens-Amplified Survey from Space. The depth of this data also reveals many HII regions within the lensed spiral galaxy which we identify between the five counter-images. Here we expand the capability of our free-form method to incorporate these HII regions locally, with other reliable lensed galaxies added for a global solution. This improved accuracy allows us to estimate when the Refsdal supernova will appear within the other lensed images of the spiral galaxy to an accuracy of $sim$ 7%. We predict this supernova will reappear in one of the counter-images (RA=11:49:36.025, DEC=+22:23:48.11, J2000) and on November 1$^{st}$ 2015 (with an estimated error of $pm$ 25 days) it will be at the same phase as it was when it was originally discovered, offering a unique opportunity to study the early phases of this supernova and to examine the consistency of the mass model and the cosmological model that have an impact on the time delay prediction.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا