Do you want to publish a course? Click here

Chemical- and hydrostatic-pressure effects on the Kitaev honeycomb material Na$_2$IrO$_3$

124   0   0.0 ( 0 )
 Added by Gediminas Simutis
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

The low-temperature magnetic properties of tcr{polycrystalline} Na$_2$IrO$_3$, a candidate material for the realization of a quantum spin-liquid state, were investigated by means of muon-spin relaxation and nuclear magnetic resonance methods under chemical and hydrostatic pressure. The Li-for-Na chemical substitution promotes an inhomogeneous magnetic order, whereas hydrostatic pressure (up to 3.9,GPa) results in an enhancement of the ordering temperature $T_mathrm{N}$. In the first case, the inhomogeneous magnetic order suggests either short- or long-range correlations of broadly distributed $j=,$textonehalf Ir$^{4+}$ magnetic moments, reflecting local disorder. The increase of $T_mathrm{N}$ under applied pressure points at an increased strength of three dimensional interactions arising from interlayer compression.



rate research

Read More

We study the effect of isoelectronic doping and external pressure in tuning the ground state of the honeycomb iridate Na$_2$IrO$_3$ by combining optical spectroscopy with synchrotron x-ray diffraction measurements on single crystals. The obtained optical conductivity of Na$_2$IrO$_3$ is discussed in terms of a Mott insulating picture versus the formation of quasimolecular orbitals and in terms of Kitaev-interactions. With increasing Li content $x$, (Na$_{1-x}$Li$_x$)$_2$IrO$_3$ moves deeper into the Mott insulating regime and there are indications that up to a doping level of 24% the compound comes closer to the Kitaev-limit. The optical conductivity spectrum of single crystalline $alpha$-Li$_2$IrO$_3$ does not follow the trends observed for the series up to $x=0.24$. There are strong indications that $alpha$-Li$_2$IrO$_3$ is less close to the Kitaev-limit compared to Na$_2$IrO$_3$ and closer to the quasimolecular orbital picture. Except for the pressure-induced hardening of the phonon modes, the optical properties of Na$_2$IrO$_3$ seem to be robust against external pressure. Possible explanations of the unexpected evolution of the optical conductivity with isolectronic doping and the drastic change between $x=0.24$ and $x=1$ are given by comparing the pressure-induced changes of lattice parameters and the optical conductivity with the corresponding changes induced by doping.
80 - R. Sarkar , Z. Mei , A. Ruiz 2019
Kitaevs honeycomb spin-liquid model and its proposed realization in materials such as $alpha$-RuCl$_3$, Li$_2$IrO$_3$ and Na$_2$IrO$_3$ continue to present open questions about how the dynamics of a spin-liquid are modified in the presence of non-Kitaev interactions as well as the presence of inhomogeneities. Here we use $^{23}$Na nuclear magnetic resonance to probe both static and dynamical magnetic properties in single crystal Na$_2$IrO$_3$. We find that the NMR shift follows the bulk susceptibility above 30 K but deviates from it below; moreover below $T_N$ the spectra show a broad distribution of internal magnetic fields. Both of these results provide evidence for inequivalent magnetic sites at low temperature, suggesting inhomogeneities are important for the magnetism. The spin-lattice relaxation rate is isotropic and diverges at $T_N$, suggesting that the Kitaev cubic axes may control the critical quantum spin fluctuations. In the ordered state, we observe gapless excitations, which may arise from site substitution, emergent defects from milder disorder, or possibly be associated with nearby quantum paramagnetic states distinct from the Kitaev spin liquid.
Co$^{2+}$ ions in an octahedral crystal field, stabilise a j$_{eff}$ = 1/2 ground state with an orbital degree of freedom and have been recently put forward for realising Kitaev interactions, a prediction we have tested by investigating spin dynamics in two cobalt honeycomb lattice compounds, Na$_2$Co$_2$TeO$_6$ and Na$_3$Co$_2$SbO$_6$, using inelastic neutron scattering. We used linear spin wave theory to show that the magnetic spectra can be reproduced with a spin Hamiltonian including a dominant Kitaev nearest-neighbour interaction, weaker Heisenberg interactions up to the third neighbour and bond-dependent off-diagonal exchange interactions. Beyond the Kitaev interaction that alone would induce a quantum spin liquid state, the presence of these additional couplings is responsible for the zigzag-type long-range magnetic ordering observed at low temperature in both compounds. These results provide evidence for the realization of Kitaev-type coupling in cobalt-based materials, despite hosting a weaker spin-orbit coupling than their 4d and 5d counterparts.
Direct experimental investigations of the low-energy electronic structure of the Na$_2$IrO$_3$ iridate insulator are sparse and draw two conflicting pictures. One relies on flat bands and a clear gap, the other involves dispersive states approaching the Fermi level, pointing to surface metallicity. Here, by a combination of angle-resolved photoemission, photoemission electron microscopy, and x-ray absorption, we show that the correct picture is more complex and involves an anomalous band, arising from charge transfer from Na atoms to Ir-derived states. Bulk quasiparticles do exist, but in one of the two possible surface terminations the charge transfer is smaller and they remain elusive.
The layered honeycomb iridate $alpha$-Li$_2$IrO$_3$ displays an incommensurate magnetic structure with counterrotating moments on nearest-neighbor sites, proposed to be stabilized by strongly-frustrated anisotropic Kitaev interactions between spin-orbit entangled Ir$^{4+}$ magnetic moments. Here we report powder inelastic neutron scattering measurements that observe sharply dispersive low-energy magnetic excitations centered at the magnetic ordering wavevector, attributed to Goldstone excitations of the incommensurate order, as well as an additional intense mode above a gap $Deltasimeq2.3$ meV. Zero-field muon-spin relaxation measurements show clear oscillations in the muon polarization below the N{e}el temperature $T_{rm N}simeq15$ K with a time-dependent profile consistent with bulk incommensurate long-range magnetism. Pulsed field magnetization measurements observe that only about half the saturation magnetization value is reached at the maximum field of 64 T. A clear anomaly near 25 T indicates a transition to a phase with reduced susceptibility. The transition field has a Zeeman energy comparable to the zero-field gapped mode, suggesting gap suppression as a possible mechanism for the field-induced transition.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا