Do you want to publish a course? Click here

The Wendelstein Weak Lensing (WWL) pathfinder: Accurate weak lensing masses for Planck clusters

67   0   0.0 ( 0 )
 Added by Romy Louise Rehmann
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present results from the Wendelstein Weak Lensing (WWL) pathfinder project, in which we have observed three intermediate redshift Planck clusters of galaxies with the new 30$times 30$ wide field imager at the 2m Fraunhofer Telescope at Wendelstein Observatory. We investigate the presence of biases in our shear catalogues and estimate their impact on our weak lensing mass estimates. The overall calibration uncertainty depends on the cluster redshift and is below 8.1-15 per cent for $z approx 0.27-0.77$. It will decrease with improvements on the background sample selection and the multiplicative shear bias calibration. We present the first weak lensing mass estimates for PSZ1 G109.88+27.94 and PSZ1 G139.61+24.20, two SZ-selected cluster candidates. Based on Wendelstein colors and SDSS photometry, we find that the redshift of PSZ1 G109.88+27.94 has to be corrected to $z approx 0.77$. We investigate the influence of line-of-sight structures on the weak lensing mass estimates and find upper limits for two groups in each of the fields of PSZ1 G109.88+27.94 and PSZ1 G186.98+38.66. We compare our results to SZ and dynamical mass estimates from the literature, and in the case of PSZ1 G186.98+38.66 to previous weak lensing mass estimates. We conclude that our pathfinder project demonstrates that weak lensing cluster masses can be accurately measured with the 2m Fraunhofer Telescope.



rate research

Read More

In light of the tension in cosmological constraints reported by the Planck team between their SZ-selected cluster counts and Cosmic Microwave Background (CMB) temperature anisotropies, we compare the Planck cluster mass estimates with robust, weak-lensing mass measurements from the Weighing the Giants (WtG) project. For the 22 clusters in common between the Planck cosmology sample and WtG, we find an overall mass ratio of $left< M_{Planck}/M_{rm WtG} right> = 0.688 pm 0.072$. Extending the sample to clusters not used in the Planck cosmology analysis yields a consistent value of $left< M_{Planck}/M_{rm WtG} right> = 0.698 pm 0.062$ from 38 clusters in common. Identifying the weak-lensing masses as proxies for the true cluster mass (on average), these ratios are $sim 1.6sigma$ lower than the default mass bias of 0.8 assumed in the Planck cluster analysis. Adopting the WtG weak-lensing-based mass calibration would substantially reduce the tension found between the Planck cluster count cosmology results and those from CMB temperature anisotropies, thereby dispensing of the need for new physics such as uncomfortably large neutrino masses (in the context of the measured Planck temperature anisotropies and other data). We also find modest evidence (at 95 per cent confidence) for a mass dependence of the calibration ratio and discuss its potential origin in light of systematic uncertainties in the temperature calibration of the X-ray measurements used to calibrate the Planck cluster masses. Our results exemplify the critical role that robust absolute mass calibration plays in cluster cosmology, and the invaluable role of accurate weak-lensing mass measurements in this regard.
Large area surveys have detected significant samples of galaxy clusters that can be used to constrain cosmological parameters, provided that the masses of the clusters are measured robustly. To improve the calibration of cluster masses using weak gravitational lensing we present new results for 48 clusters at $0.05<z<0.15$, observed as part of the Multi Epoch Nearby Cluster Survey (MENeaCS), and reevaluate the mass estimates for 52 clusters from the Canadian Cluster Comparison Project (CCCP). Updated high-fidelity photometric redshift catalogues of reference deep fields are used in combination with advances in shape measurements and state-of-the-art cluster simulations, yielding an average systematic uncertainty in the lensing signal below 5%, similar to the statistical uncertainty for our cluster sample. We derive a scaling relation with Planck measurements for the full sample and find a bias in the Planck masses of $1-b=0.84 pm 0.04$. We find no statistically significant trend of the mass bias with redshift or cluster mass, but find that different selections could change the bias by up to 1.5$sigma$. We find a gas fraction of $0.139 pm 0.014$ for 8 relaxed clusters in our sample, which can also be used to infer cosmological parameters.
429 - F. Feroz 2011
Weak gravitational lensing studies of galaxy clusters often assume a spherical cluster model to simplify the analysis, but some recent studies have suggested this simplifying assumption may result in large biases in estimated cluster masses and concentration values, since clusters are expected to exhibit triaxiality. Several such analyses have, however, quoted expressions for the spatial derivatives of the lensing potential in triaxial models, which are open to misinterpretation. In this paper, we give a clear description of weak lensing by triaxial NFW galaxy clusters and also present an efficient and robust method to model these clusters and obtain parameter estimates. By considering four highly triaxial NFW galaxy clusters, we re-examine the impact of simplifying spherical assumptions and found that while the concentration estimates are largely unbiased except in one of our traixial NFW simulated clusters, for which the concentration is only slightly biased, the masses are significantly biased, by up to 40%, for all the clusters we analysed. Moreover, we find that such assumptions can lead to the erroneous conclusion that some substructure is present in the galaxy clusters or, even worse, that multiple galaxy clusters are present in the field. Our cluster fitting method also allows one to answer the question of whether a given cluster exhibits triaxiality or a simple spherical model is good enough.
Cosmic voids are an important probe of large-scale structure that can constrain cosmological parameters and test cosmological models. We present a new paradigm for void studies: void detection in weak lensing convergence maps. This approach identifies objects that relate directly to our theoretical understanding of voids as underdensities in the total matter field and presents several advantages compared to the customary method of finding voids in the galaxy distribution. We exemplify this approach by identifying voids using the weak lensing peaks as tracers of the large-scale structure. We find self-similarity in the void abundance across a range of peak signal-to-noise selection thresholds. The voids obtained via this approach give a tangential shear signal up to $sim40$ times larger than voids identified in the galaxy distribution.
Galaxy clusters are a promising probe of late-time structure growth, but constraints on cosmology from cluster abundances are currently limited by systematics in their inferred masses. One unmitigated systematic effect in weak-lensing mass inference is ignoring the presence of baryons and treating the entire cluster as a dark matter halo. In this work we present a new flexible model for cluster densities that captures both the baryonic and dark matter profiles, a new general technique for calculating the lensing signal of an arbitrary density profile, and a methodology for stacking those lensing signal to appropriately model stacked weak-lensing measurements of galaxy cluster catalogues. We test this model on 1400 simulated clusters. Similarly to previous studies, we find that a dark matter-only model overestimates the average mass by $7.5%$, but including our baryonic term reduces that to $0.7%$. Additionally, to mitigate the computational complexity of our model, we construct an emulator (surrogate model) which accurately interpolates our model for parameter inference, while being much faster to use than the raw model. We also provide an open-source software framework for our model and emulator, called maszcal, which will serve as a platform for continued efforts to improve these mass-calibration techniques. In this work, we detail our model, the construction of the emulator, and the tests which we used to validate that our model does mitigate bias. Lastly, we describe tests of the emulators accuracy
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا