Do you want to publish a course? Click here

Impacts of radiative accelerations on solar-like oscillating main-sequence stars

164   0   0.0 ( 0 )
 Added by Morgan Deal
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Chemical element transport processes are among the crucial physical processes needed for precise stellar modelling. Atomic diffusion by gravitational settling nowadays is usually taken into account, and is essential for helioseismic studies. On the other hand, radiative accelerations are rarely accounted for, act differently on the various chemical elements, and can strongly counteract gravity in some stellar mass domains. In this study we aim at determining whether radiative accelerations impact the structure of solar-like oscillating main-sequence stars observed by asteroseismic space missions. We implemented the calculation of radiative accelerations in the CESTAM code using the Single-Valued Parameter method. We built and compared several grids of stellar models including gravitational settling, but some with and others without radiative accelerations. We found that radiative accelerations may not be neglected for stellar masses larger than 1.1~M$_{odot}$ at solar metallicity. The difference in age due to their inclusion in models can reach 9% for the more massive stars of our grids. We estimated that the percentage of the PLATO core program stars whose modelling would require radiative accelerations ranges between 33 and 58% depending on the precision of the seismic data. We conclude that, in the context of Kepler, TESS, and PLATO missions, which provide (or will provide) high quality seismic data, radiative accelerations can have a significant effect when inferring the properties of solar-like oscillators properly. This is particularly important for age inferences. However, the net effect for each individual star results from the competition between atomic diffusion including radiative accelerations and other internal transport processes. This will be investigated in a forthcoming companion paper.



rate research

Read More

65 - L. A. Balona 2021
From sector 1--40 {em TESS} observations, 20 new roAp stars, 97 ostensibly non-peculiar stars with roAp-like frequencies (the roA variables) and 617 $delta$~Scuti stars with independent frequencies typical of roAp stars were found. There is no criterion that can distinguish roAp/roA stars from $delta$~Sct stars. For expediency, an arbitrary low frequency of 60,d$^{-1}$ was chosen as the boundary between the $delta$~Sct and roAp/roA classes. Because an unknown mode selection process is clearly present in $delta$~Sct stars, the roAp/roA stars may be considered as $delta$~Sct stars in which high frequencies are preferentially selected. This interpretation is supported by the fact that the combined proportion of $delta$~Sct and roAp stars among Ap stars is the same as among non-Ap stars. Contrary to models, observations show that low frequencies in Ap stars are not suppressed. One of the most puzzling aspects of roAp stars is the large fraction which have short mode lifetimes. The failure of current models to explain these results may be due to an incorrect treatment of the outer layers of these stars.
Magnetic fields are at the heart of the observed stellar activity in late-type stars, and they are presumably generated by a dynamo mechanism at the interface layer between the radiative and the convective stellar regions. Since dynamo models are based on the interaction between differential rotation and convective motions, the introduction of rotation in the ATON 2.3 stellar code allows for explorations regarding a physically consistent treatment of magnetic effects in stellar structure and evolution, even though there are formidable mathematical and numerical challenges involved. As examples, we present theoretical estimates for both the local (tau_c) and global (tau_g) convective turnover times for rotating pre-main sequence solar-type stars, based on up-to-date input physics for stellar models. Our theoretical predictions are compared with the previous ones available in the literature. In addition, we investigate the dependence of the convective turnover time on convection regimes, the presence of rotation and atmospheric treatment. Those estimates, this quantities can be used to calculate the Rossby number, Ro, which is related to the magnetic activity strength in dynamo theories and, at least for main-sequence stars, shows an observational correlation with stellar activity. More important, they can also contribute for testing stellar models against observations. Our theoretical values of tau_c, tau_g and Ro qualitatively agree with those published by Kim & Demarque (1996). By increasing the convection efficiency, tau_g decreases for a given mass. FST models show still lower values. The presence of rotation shifts tau_g towards slightly higher values when compared with non-rotating models. The use of non-gray boundary conditions in the models yields values of tau_g smaller than in the gray approximation.
Context. The advent of space-borne missions such as CoRoT or Kepler providing photometric data has brought new possibilities for asteroseismology across the H-R diagram. Solar-like oscillations are now observed in many stars, including red giants and main- sequence stars. Aims. Based on several hundred identified pulsating red giants, we aim to characterize their oscillation amplitudes and widths. These observables are compared with those of main-sequence stars in order to test trends and scaling laws for these parameters for both main-sequence stars and red giants. Methods. An automated fitting procedure is used to analyze several hundred Fourier spectra. For each star, a modeled spectrum is fitted to the observed oscillation spectrum, and mode parameters are derived. Results. Amplitudes and widths of red-giant solar-like oscillations are estimated for several hundred modes of oscillation. Amplitudes are relatively high (several hundred ppm) and widths relatively small (very few tenths of a {mu}Hz). Conclusions. Widths measured in main-sequence stars show a different variation with the effective temperature than red giants. A single scaling law is derived for mode amplitudes of both red giants and main-sequence stars versus their luminosity to mass ratio. However, our results suggest that two regimes may also be compatible with the observations.
529 - K. Belkacem , M.A. Dupret , 2009
Motivated by the recent detection of stochastically excited modes in the massive star V1449 Aql (Belkacem et al., 2009b), already known to be a $beta$ Cephei, we theoretically investigate the driving by turbulent convection. By using a full non-adiabatic computation of the damping rates, together with a computation of the energy injection rates, we provide an estimate of the amplitudes of modes excited by both the convective region induced by the iron opacity bump and the convective core. Despite uncertainties in the dynamical properties of such convective regions, we demonstrate that both are able to efficiently excite $p$ modes above the CoRoT observational threshold and the solar amplitudes. In addition, we emphasise the potential asteroseismic diagnostics provided by each convective region, which we hope will help to identify the one responsible for solar-like oscillations, and to give constraints on this convective zone. A forthcoming work will be dedicated to an extended investigation of the likelihood of solar-like oscillations across the Hertzsprung-Russell diagram.
The number of main-sequence stars for which we can observe solar-like oscillations is expected to increase considerably with the short-cadence high-precision photometric observations from the NASA Kepler satellite. Because of this increase in number of stars, automated tools are needed to analyse these data in a reasonable amount of time. In the framework of the asteroFLAG consortium, we present an automated pipeline which extracts frequencies and other parameters of solar-like oscillations in main-sequence and subgiant stars. The pipeline uses only the timeseries data as input and does not require any other input information. Tests on 353 artificial stars reveal that we can obtain accurate frequencies and oscillation parameters for about three quarters of the stars. We conclude that our methods are well suited for the analysis of main-sequence stars, which show mainly p-mode oscillations.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا