Many physical systems are formulated on domains which are relatively large in some directions but relatively thin in other directions. We expect such systems to have emergent structures that vary slowly over the large dimensions. Common mathematical approximations for determining the emergent dynamics often rely on self-consistency arguments or limits as the aspect ratio of the `large and `thin dimensions becomes nonphysically infinite. Here we extend to nonlinear dynamics a new approach [IMA J. Appl. Maths, DOI: 10.1093/imamat/hxx021] which analyses the dynamics at each cross-section of the domain via a rigorous multivariate Taylor series. Then centre manifold theory supports the global modelling of the systems emergent dynamics in the large but finite domain. Interactions between the cross-section coupling and both fast and slow dynamics determines quantitative error bounds for the nonlinear modelling. We illustrate the methodology by deriving the large-scale dynamics of a thin liquid film, where the film is subject to a Coriolis force induced by a rotating substrate. The approach developed here quantifies the accuracy of known approximations, extends such approximations to mixed order modelling, and may open previously intractable modelling issues to new tools and insights.