Do you want to publish a course? Click here

Multiple singularities of the equilibrium free energy in a one-dimensional model of soft rods

59   0   0.0 ( 0 )
 Added by Tridib Sadhu
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

There is a misconception, widely shared amongst physicists, that the equilibrium free energy of a one-dimensional classical model with strictly finite-ranged interactions, and at non-zero temperatures, can not show any singularities as a function of the coupling constants. In this Letter, we discuss an instructive counter-example. We consider thin rigid linear rods of equal length $2 ell$ whose centers lie on a one-dimensional lattice, of lattice spacing $a$. The interaction between rods is a soft-core interaction, having a finite energy $U$ per overlap of rods. We show that the equilibrium free energy per rod $mathcal{F}(tfrac{ell}{a}, beta)$, at inverse temperature $beta$, has an infinite number of singularities, as a function of $tfrac{ell}{a}$.



rate research

Read More

The properties of the interface between solid and melt are key to solidification and melting, as the interfacial free energy introduces a kinetic barrier to phase transitions. This makes solidification happen below the melting temperature, in out-of-equilibrium conditions at which the interfacial free energy is ill-defined. Here we draw a connection between the atomistic description of a diffuse solid- liquid interface and its thermodynamic characterization. This framework resolves the ambiguities in defining the solid-liquid interfacial free energy above and below the melting temperature. In addition, we introduce a simulation protocol that allows solid-liquid interfaces to be reversibly created and destroyed at conditions relevant for experiments. We directly evaluate the value of the interfacial free energy away from the melting point for a simple but realistic atomic potential, and find a more complex temperature dependence than the constant positive slope that has been generally assumed based on phenomenological considerations and that has been used to interpret experiments. This methodology could be easily extended to the study of other phase transitions, from condensation to precipitation. Our analysis can help reconcile the textbook picture of classical nucleation theory with the growing body of atomistic studies and mesoscale models of solidification.
196 - Tridib Sadhu , Deepak Dhar 2007
We study the Zhang model of sandpile on a one dimensional chain of length $L$, where a random amount of energy is added at a randomly chosen site at each time step. We show that in spite of this randomness in the input energy, the probability distribution function of energy at a site in the steady state is sharply peaked, and the width of the peak decreases as $ {L}^{-1/2}$ for large $L$. We discuss how the energy added at one time is distributed among different sites by topplings with time. We relate this distribution to the time-dependent probability distribution of the position of a marked grain in the one dimensional Abelian model with discrete heights. We argue that in the large $L$ limit, the variance of energy at site $x$ has a scaling form $L^{-1}g(x/L)$, where $g(xi)$ varies as $log(1/xi)$ for small $xi$, which agrees very well with the results from numerical simulations.
The dynamics of entanglement in the one-dimensional spin-1/2 anisotropic XXZ model is studied using the quantum renormalization-group method. We obtain the analytical expression of the concurrence, for two different quenching methods, it is found that initial state plays a key role in the evolution of system entanglement, i.e., the system returns completely to the initial state every other period. Our computations and analysis indicate that the first derivative of the characteristic time at which the concurrence reaches its maximum or minimum with respect to the anisotropic parameter occurs nonanalytic behaviors at the quantum critical point. Interestingly, the minimum value of the first derivative of the characteristic time versus the size of the system exhibits the scaling behavior which is the same as the scaling behavior of the system ground-state entanglement in equilibrium. In particular, the scaling behavior near the critical point is independent of the initial state.
156 - Amir Bar , David Mukamel 2013
We introduce and analyze an exactly soluble one-dimensional Ising model with long range interactions which exhibits a mixed order transition (MOT), namely a phase transition in which the order parameter is discontinuous as in first order transitions while the correlation length diverges as in second order transitions. Such transitions are known to appear in a diverse classes of models which are seemingly unrelated. The model we present serves as a link between two classes of models which exhibit MOT in one dimension, namely, spin models with a coupling constant which decays as the inverse distance squared and models of depinning transitions, thus making a step towards a unifying framework.
We study the moments of the partial transpose of the reduced density matrix of two intervals for the free massless Dirac fermion. By means of a direct calculation based on coherent state path integral, we find an analytic form for these moments in terms of the Riemann theta function. We show that the moments of arbitrary order are equal to the same quantities for the compactified boson at the self-dual point. These equalities imply the non trivial result that also the negativity of the free fermion and the self-dual boson are equal.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا