Do you want to publish a course? Click here

Finite Temperature Behavior in the Second Landau Level of the Two-dimensional Electron Gas

82   0   0.0 ( 0 )
 Added by Gabor Csathy
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Reports of weak local minima in the magnetoresistance at $ u=2+3/5$, $2+3/7$, $2+4/9$, $2+5/9$, $2+5/7$, and $2+5/8$ in the second Landau level of the electron gas in GaAs/AlGaAs left open the possibility of fractional quantum Hall states at these filling factors. In a high quality sample we found that the magnetoresistance exhibits peculiar features near these filling factors of interest. These features, however, cannot be associated with fractional quantum Hall states; instead they originate from magnetoresistive fingerprints of the electronic bubble phases. We found only two exceptions: at $ u=2+2/7$ and $2+5/7$ there is evidence for incipient fractional quantum Hall states at intermediate temperatures. As the temperature is lowered, these fractional quantum Hall states collapse due to a phase competition with bubble phases.



rate research

Read More

In spite of its ubiquity in strongly correlated systems, the competition of paired and nematic ground states remains poorly understood. Recently such a competition was reported in the two-dimensional electron gas at filling factor $ u=5/2$. At this filling factor a pressure-induced quantum phase transition was observed from the paired fractional quantum Hall state to the quantum Hall nematic. Here we show that the pressure induced paired-to-nematic transition also develops at $ u=7/2$, demonstrating therefore this transition in both spin branches of the second orbital Landau level. However, we find that pressure is not the only parameter controlling this transition. Indeed, ground states consistent with those observed under pressure also develop in a sample measured at ambient pressure, but in which the electron-electron interaction was tuned close to its value at the quantum critical point. Our experiments suggest that electron-electron interactions play a critical role in driving the paired-to-nematic transition.
The interaction between a single hole and a two-dimensional, paramagnetic, homogeneous electron gas is studied using diffusion quantum Monte Carlo simulations. Calculations of the electron-hole correlation energy, pair-correlation function, and the electron-hole center-of-mass momentum density are reported for a range of electron--hole mass ratios and electron densities. We find numerical evidence of a crossover from a collective Mahan exciton to a trion-dominated state in a density range in agreement with that found in recent experiments on quantum well heterostructures.
121 - N. Deng , A. Kumar , M.J. Manfra 2011
We report an unexpected sharp peak in the temperature dependence of the magnetoresistance of the reentrant integer quantum Hall states in the second Landau level. This peak defines the onset temperature of these states. We find that in different spin branches the onset temperatures of the reentrant states scale with the Coulomb energy. This scaling provides direct evidence that Coulomb interactions play an important role in the formation of these reentrant states evincing their collective nature.
Two-dimensional electron gases (2DEGs) in SrTiO$_3$ have become model systems for engineering emergent behaviour in complex transition metal oxides. Understanding the collective interactions that enable this, however, has thus far proved elusive. Here we demonstrate that angle-resolved photoemission can directly image the quasiparticle dynamics of the $d$-electron subband ladder of this complex-oxide 2DEG. Combined with realistic tight-binding supercell calculations, we uncover how quantum confinement and inversion symmetry breaking collectively tune the delicate interplay of charge, spin, orbital, and lattice degrees of freedom in this system. We reveal how they lead to pronounced orbital ordering, mediate an orbitally-enhanced Rashba splitting with complex subband-dependent spin-orbital textures and markedly change the character of electron-phonon coupling, co-operatively shaping the low-energy electronic structure of the 2DEG. Our results allow for a unified understanding of spectroscopic and transport measurements across different classes of SrTiO$_3$-based 2DEGs, and yield new microscopic insights on their functional properties.
The coupling of optical and electronic degrees of freedom together with quantum confinement in low-dimensional electron systems is particularly interesting for achieving exotic functionalities in strongly correlated oxide electronics. Recently, high room-temperature mobility has been achieved for a large bandgap transparent oxide - BaSnO$_3$ upon extrinsic La or Sb doping, which has excited significant research attention. In this work, we report the observation of room-temperature ferromagnetism in BaSnO$_3$ thin films and the realization of a two-dimensional electron gas (2DEG) on the surface of transparent BaSnO$_3$ via oxygen vacancy creation, which exhibits a high carrier density of $sim 7.72*10^{14} /{rm cm}^2$ and a high room-temperature mobility of ~18 cm$^2$/V/s. Such a 2DEG is rather sensitive to strain and a less than 0.1% in-plane biaxial compressive strain leads to a giant resistance enhancement of 350% (more than 540 kOhm/Square) at room temperature. Thus, this work creates a new path to exploring the physics of low-dimensional oxide electronics and devices applicable at room temperature.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا