Do you want to publish a course? Click here

Parameterized algorithms and data reduction for the short secluded $s$-$t$-path problem

81   0   0.0 ( 0 )
 Added by Ren\\'e van Bevern
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Given a graph $G=(V,E)$, two vertices $s,tin V$, and two integers $k,ell$, the Short Secluded Path problem is to find a simple $s$-$t$-path with at most $k$ vertices and $ell$ neighbors. We study the parameterized complexity of the problem with respect to four structural graph parameters: the vertex cover number, treewidth, feedback vertex number, and feedback edge number. In particular, we completely settle the question of the existence of problem kernels with size polynomial in these parameters and their combinations with $k$ and $ell$. We also obtain a $2^{O(w)}cdot ell^2cdot n$-time algorithm for graphs of treewidth $w$, which yields subexponential-time algorithms in several graph classes.



rate research

Read More

We consider two matrix completion problems, in which we are given a matrix with missing entries and the task is to complete the matrix in a way that (1) minimizes the rank, or (2) minimizes the number of distinct rows. We study the parameterized complexity of the two aforementioned problems with respect to several parameters of interest, including the minimum number of matrix rows, columns, and rows plus columns needed to cover all missing entries. We obtain new algorithmic results showing that, for the bounded domain case, both problems are fixed-parameter tractable with respect to all aforementioned parameters. We complement these results with a lower-bound result for the unbounded domain case that rules out fixed-parameter tractability w.r.t. some of the parameters under consideration.
Given an undirected graph with edge weights and a subset $R$ of its edges, the Rural Postman Problem (RPP) is to find a closed walk of minimum total weight containing all edges of $R$. We prove that RPP is WK[1]-complete parameterized by the number and cost $d$ of edges traversed additionally to the required ones. Thus, in particular, RPP instances cannot be polynomial-time compressed to instances of size polynomial in $d$ unless the polynomial-time hierarchy collapses. In contrast, denoting by $bleq 2d$ the number of vertices incident to an odd number of edges of $R$ and by $cleq d$ the number of connected components formed by the edges in $R$, we show how to reduce any RPP instance $I$ to an RPP instance $I$ with $2b+O(c/varepsilon)$ vertices in $O(n^3)$ time so that any $alpha$-approximate solution for $I$ gives an $alpha(1+varepsilon)$-approximate solution for $I$, for any $alphageq 1$ and $varepsilon>0$. That is, we provide a polynomial-size approximate kernelization scheme (PSAKS). We experimentally evaluate it on wide-spread benchmark data sets as well as on two real snow plowing instances from Berlin. On instances with few connected components, the number of vertices and required edges is reduced to about $50,%$ at a $1,%$ solution quality loss. We also make first steps towards a PSAKS for the parameter $c$.
We study the algorithmic properties of the graph class Chordal-ke, that is, graphs that can be turned into a chordal graph by adding at most k edges or, equivalently, the class of graphs of fill-in at most k. We discover that a number of fundamental intractable optimization problems being parameterized by k admit subexponential algorithms on graphs from Chordal-ke. We identify a large class of optimization problems on Chordal-ke that admit algorithms with the typical running time 2^{O(sqrt{k}log k)}cdot n^{O(1)}. Examples of the problems from this class are finding an independent set of maximum weight, finding a feedback vertex set or an odd cycle transversal of minimum weight, or the problem of finding a maximum induced planar subgraph. On the other hand, we show that for some fundamental optimization problems, like finding an optimal graph coloring or finding a maximum clique, are FPT on Chordal-ke when parameterized by k but do not admit subexponential in k algorithms unless ETH fails. Besides subexponential time algorithms, the class of Chordal-ke graphs appears to be appealing from the perspective of kernelization (with parameter k). While it is possible to show that most of the weighted variants of optimization problems do not admit polynomial in k kernels on Chordal-ke graphs, this does not exclude the existence of Turing kernelization and kernelization for unweighted graphs. In particular, we construct a polynomial Turing kernel for Weighted Clique on Chordal-ke graphs. For (unweighted) Independent Set we design polynomial kernels on two interesting subclasses of Chordal-ke, namely, Interval-ke and Split-ke graphs.
A skew-symmetric graph $(D=(V,A),sigma)$ is a directed graph $D$ with an involution $sigma$ on the set of vertices and arcs. In this paper, we introduce a separation problem, $d$-Skew-Symmetric Multicut, where we are given a skew-symmetric graph $D$, a family of $cal T$ of $d$-sized subsets of vertices and an integer $k$. The objective is to decide if there is a set $Xsubseteq A$ of $k$ arcs such that every set $J$ in the family has a vertex $v$ such that $v$ and $sigma(v)$ are in different connected components of $D=(V,Asetminus (Xcup sigma(X))$. In this paper, we give an algorithm for this problem which runs in time $O((4d)^{k}(m+n+ell))$, where $m$ is the number of arcs in the graph, $n$ the number of vertices and $ell$ the length of the family given in the input. Using our algorithm, we show that Almost 2-SAT has an algorithm with running time $O(4^kk^4ell)$ and we obtain algorithms for {sc Odd Cycle Transversal} and {sc Edge Bipartization} which run in time $O(4^kk^4(m+n))$ and $O(4^kk^5(m+n))$ respectively. This resolves an open problem posed by Reed, Smith and Vetta [Operations Research Letters, 2003] and improves upon the earlier almost linear time algorithm of Kawarabayashi and Reed [SODA, 2010]. We also show that Deletion q-Horn Backdoor Set Detection is a special case of 3-Skew-Symmetric Multicut, giving us an algorithm for Deletion q-Horn Backdoor Set Detection which runs in time $O(12^kk^5ell)$. This gives the first fixed-parameter tractable algorithm for this problem answering a question posed in a paper by a superset of the authors [STACS, 2013]. Using this result, we get an algorithm for Satisfiability which runs in time $O(12^kk^5ell)$ where $k$ is the size of the smallest q-Horn deletion backdoor set, with $ell$ being the length of the input formula.
We investigate the parameterized complexity of the following edge coloring problem motivated by the problem of channel assignment in wireless networks. For an integer q>1 and a graph G, the goal is to find a coloring of the edges of G with the maximum number of colors such that every vertex of the graph sees at most q colors. This problem is NP-hard for q>1, and has been well-studied from the point of view of approximation. Our main focus is the case when q=2, which is already theoretically intricate and practically relevant. We show fixed-parameter tractable algorithms for both the standard and the dual parameter, and for the latter problem, the result is based on a linear vertex kernel.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا