Do you want to publish a course? Click here

High-pressure high-temperature phase diagram of zinc

117   0   0.0 ( 0 )
 Added by Daniel Errandonea
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

The phase diagram of Zn has been explored up to 140 GPa and 6000 K, by combining optical observations, x-ray diffraction, and ab-initio calculations. In the pressure range covered by this study, Zn is found to retain a hexagonal close-packed crystal symmetry up to the melting temperature. The known decrease of the axial ratio of the hcp phase of Zn under compression is observed in x-ray diffraction experiments from 300 K up to the melting temperature. The pressure at which the axial ratio reaches the square root of 3 value, around 10 GPa, is slightly affected by temperature. When this axial ratio is reached, we observed that single crystals of Zn, formed at high temperature, break into multiple polycrystals. In addition, a noticeable change in the pressure dependence of the axial ratio takes place at the same pressure. Both phenomena could be caused by an isomorphic second-order phase transition induced by pressure in Zn. The reported melt curve extends previous results from 24 to 135 GPa. The pressure dependence obtained for the melting temperature is accurately described up to 135 GPa by using a Simon-Glatzel equation. The determined melt curve agrees with previous low-pressure studies and with shock-wave experiments, with a melting temperature of 5060 K at 135 GPa. Finally, a thermal equation of state is reported, which at room-temperature agrees with the literature.



rate research

Read More

The complexity of strongly correlated electron physics in vanadium dioxide is exemplified as its rich phase diagrams of all kinds, which in turn shed light on the mechanisms behind its various phase transitions. In this work, we map out the hydrostatic pressure - temperature phase diagram of vanadium dioxide nanobeams by independently varying pressure and temperature with a diamond anvil cell. In addition to the well-known insulating M1 (monoclinic) and metallic R (tetragonal) phases, the diagram identifies the existence at high pressures of the insulating M1 (monoclinic, more conductive than M1) phase, and two metallic phases of X (monoclinic) and O (orthorhombic, at high temperature only). Systematic optical and electrical measurements combined with density functional calculations allow us to delineate their phase boundaries as well as reveal some basic features of the transitions.
We investigate the temperature-pressure phase diagram of BaTiO_3 using a first-principles effective-Hamiltonian approach. We find that the zero-point motion of the ions affects the form of the phase diagram dramatically. Specifically, when the zero-point fluctuations are included in the calculations, all the polar (tetragonal, orthorhombic, and rhombohedral) phases of BaTiO_3 survive down to 0 K, while only the rhombohedral phase does otherwise. We provide a simple explanation for this behavior. Our results confirm the essential correctness of the phase diagram proposed by Ishidate et al. (Phys. Rev. Lett. 78, 2397 (1997)).
We report on a new method for graphene synthesis and assessment of the properties of the resulting large-area graphene layers. Graphene was produced by the high pressure - high temperature growth from the natural graphitic source by utilizing the molten Fe-Ni catalysts for dissolution of carbon. The resulting large-area graphene flakes were transferred to the silicon - silicon oxide substrates for the spectroscopic micro-Raman and scanning electron microscopy inspection. The analysis of the G peak, D, T+D and 2D bands in the Raman spectra under the 488-nm laser excitation indicate that the high pressure - high temperature technique is capable of producing the high-quality large-area single-layer graphene with a low defect density. The proposed method may lead to a more reliable graphene synthesis and facilitate its purification and chemical doping.
We use an accurate implementation of density functional theory (DFT) to calculate the zero-temperature generalized phase diagram of the 4$d$ series of transition metals from Y to Pd as a function of pressure $P$ and atomic number $Z$. The implementation used is full-potential linearized augmented plane waves (FP-LAPW), and we employ the exchange-correlation functional recently developed by Wu and Cohen. For each element, we obtain the ground-state energy for several crystal structures over a range of volumes, the energy being converged with respect to all technical parameters to within $sim 1$ meV/atom. The calculated transition pressures for all the elements and all transitions we have found are compared with experiment wherever possible, and we discuss the origin of the significant discrepancies. Agreement with experiment for the zero-temperature equation of state is generally excellent. The generalized phase diagram of the 4$d$ series shows that the major boundaries slope towards lower $Z$ with increasing $P$ for the early elements, as expected from the pressure induced transfer of electrons from $sp$ states to $d$ states, but are almost independent of $P$ for the later elements. Our results for Mo indicate a transition from bcc to fcc, rather than the bcc-hcp transition expected from $sp$-$d$ transfer.
We report a combined experimental and theoretical study of the melting curve and the structural behavior of vanadium under extreme pressure and temperature. We performed powder x-ray diffraction experiments up to 120 GPa and 4000 K, determining the phase boundary of the bcc-to-rhombohedral transition and melting temperatures at different pressures. Melting temperatures have also been established from the observation of temperature plateaus during laser heating, and the results from the density-functional theory calculations. Results obtained from our experiments and calculations are fully consistent and lead to an accurate determination of the melting curve of vanadium. These results are discussed in comparison with previous studies. The melting temperatures determined in this study are higher than those previously obtained using the speckle method, but also considerably lower than those obtained from shock-wave experiments and linear muffin-tin orbital calculations. Finally, a high-pressure high-temperature equation of state up to 120 GPa and 2800 K has also been determined.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا