Quantum magnetism in molecular spin ladders probed with muon-spin spectroscopy


Abstract in English

We present the results of muon-spin spectroscopy ($mu^{+}$SR) measurements on the molecular spin ladder system (Hpip)$_{2}$CuBr$_{4(1-x)}$Cl$_{4x}$, [Hpip=(C$_{5}$H$_{12}$N)]. Using transverse field $mu^{+}$SR we are able to identify characteristic behaviour in each of the regions of the phase diagram of the $x=0$ strong-rung spin ladder system (Hpip)$_{2}$CuBr$_4$. Comparison of our results to those of the dimer-based molecular magnet Cu(pyz)(gly)(ClO$_{4}$) shows several common features. We locate the crossovers in partially disordered (Hpip)$_{2}$CuBr$_{4(1-x)}$Cl$_{4x}$ ($x=0.05$), where a region of behaviour intermediate between quantum disordered and Luttinger liquid-like is identified. Our interpretation of the results incorporates an analysis of the probable muon stopping states in (Hpip)$_{2}$CuBr$_4$ based on density functional calculations and suggests how the muon plus its local distortion can lead to a local probe unit with good sensitivity to the magnetic state. Using longitudinal field $mu^{+}$SR we compare the dynamic response of the $x=1$ strong-rung material (Hpip)$_{2}$CuCl$_{4}$ to that of the strong-leg material (C$_{7}$H$_{10}$N)$_{2}$CuBr$_{4}$ (known as DIMPY) and demonstrate that our results are in agreement with predictions based on interacting fermionic quasiparticle excitations in these materials.

Download