Do you want to publish a course? Click here

Electronics of Time-of-flight Measurement for Back-n at CSNS

66   0   0.0 ( 0 )
 Added by Tao Yu
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Back-n is a white neutron experimental facility at China Spallation Neutron Source (CSNS). The time structure of the primary proton beam make it fully applicable to use TOF (time-of-flight) method for neutron energy measuring. We implement the electronics of TOF measurement on the general-purpose readout electronics designed for all of the seven detectors in Back-n. The electronics is based on PXIe (Peripheral Component Interconnect Express eXtensions for Instrumentation) platform, which is composed of FDM (Field Digitizer Modules), TCM (Trigger and Clock Module), and SCM (Signal Conditioning Module). T0 signal synchronous to the CSNS accelerator represents the neutron emission from the target. It is the start of time stamp. The trigger and clock module (TCM) receives, synchronizes and distributes the T0 signal to each FDM based on the PXIe backplane bus. Meantime, detector signals after being conditioned are fed into FDMs for waveform digitizing. First sample point of the signal is the stop of time stamp. According to the start, stop time stamp and the time of signal over threshold, the total TOF can be obtained. FPGA-based (Field Programmable Gate Array) TDC is implemented on TCM to accurately acquire the time interval between the asynchronous T0 signal and the global synchronous clock phase. There is also an FPGA-based TDC on FDM to accurately acquire the time interval between T0 arriving at FDM and the first sample point of the detector signal, the over threshold time of signal is obtained offline. This method for TOF measurement is efficient and not needed for additional modules. Test result shows the accuracy of TOF is sub-nanosecond and can meet the requirement for Back-n at CSNS.



rate research

Read More

70 - X.Y. Ji , P. Cao , T. Yu 2018
the main physics goal for Back-n white neutron facility at China Spallation Neutron Source (CSNS) is to measure nuclear data. The energy of neutrons is one of the most important parameters for measuring nuclear data. Method of time of flight (TOF) is used to obtain the energy of neutrons. The time when proton bunches hit the thick tungsten target is considered as the start point of TOF. T0 signal, generated from the CSNS accelerator, represents this start time. Besides, the T0 signal is also used as the gate control signal that triggers the readout electronics. Obviously, the timing precision of T0 directly affects the measurement precision of TOF and controls the running or readout electronics. In this paper, the T0 fan-out for Back-n white neutron facility at CSNS is proposed. The T0 signal travelling from the CSNS accelerator is fanned out to the two underground experiment stations respectively over long cables. To guarantee the timing precision, T0 signal is conditioned with good signal edge. Furthermore, techniques of signal pre-emphasizing and equalizing are used to improve signal quality after T0 being transmitted over long cables with about 100 m length. Experiments show that the T0 fan-out works well, the T0 signal transmitted over 100 m remains a good time resolution with a standard deviation of 25 ps. It absolutely meets the required accuracy of the measurement of TOF.
121 - Binbin Qi , Yang Li (3 2019
The Back-n white neutron beam line, which uses back-streaming white neutrons from the spallation target of the China Spallation Neutron Source, is used for nuclear data measurements. A Micromegas-based neutron detector with two variants was specially developed to measure the beam spot distribution for this beam line. In this article, the design, fabrication, and characterization of the detector are described. The results of the detector performance tests are presented, which include the relative electron transparency, the gain and the gain uniformity, and the neutron beam profile reconstruction capability. The result of the first measurement of the Back-n neutron beam spot distribution is also presented.
Back-streaming neutrons from the spallation target of the China Spallation Neutron Source (CSNS) that emit through the incoming proton channel were exploited to build a white neutron beam facility (the so-called Back-n white neutron source), which was completed in March 2018. The Back-n neutron beam is very intense, at approximately 2*10^7 n/cm^2/s at 55 m from the target, and has a nominal proton beam with a power of 100 kW in the CSNS-I phase and a kinetic energy of 1.6 GeV and a thick tungsten target in multiple slices with modest moderation from the cooling water through the slices. In addition, the excellent energy spectrum spanning from 0.5 eV to 200 MeV, and a good time resolution related to the time-of-flight measurements make it a typical white neutron source for nuclear data measurements; its overall performance is among that of the best white neutron sources in the world. Equipped with advanced spectrometers, detectors, and application utilities, the Back-n facility can serve wide applications, with a focus on neutron-induced cross-section measurements. This article presents an overview of the neutron beam characteristics, the experimental setups, and the ongoing applications at Back-n.
The GABRIELA [1] set-up is used at the FLNR to perform detailed nuclear structure studies of transfermium nuclei. Following the modernization of the VASSILISSA separator (SHELS) [2] the GABRIELA detection system has also been upgraded. The characteristics of the upgraded detection system will be presented along with results from some recent electronics tests.
The white neutron beamline at the China Spallation Neutron Source will be used mainly for nuclear data measurements. It will be characterized by high flux and broad energy spectra. To exploit the beamline as a neutron imaging source, we propose a liquid scintillator fiber array for fast neutron resonance radiography. The fiber detector unit has a small exposed area, which will limit the event counts and separate the events in time, thus satisfying the requirements for single-event time-of-flight (SEToF) measurement. The current study addresses the physical design criteria for ToF measurement, including flux estimation and detector response. Future development and potential application of the technology are also discussed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا