Dark Matter from Freeze-In via the Neutrino Portal


Abstract in English

We investigate a minimal neutrino portal dark matter (DM) model where a right-handed neutrino both generates the observed neutrino masses and mediates between the SM and the dark sector, which consists of a fermion and a boson. In contrast to earlier work, we explore regions of the parameter space where DM is produced via freeze-in instead of freeze-out motivated by the small neutrino Yukawa couplings in case of $mathcal{O} left( mathrm{TeV} right)$ heavy neutrinos. For a non-resonant production of DM, its energy density is independent of the DM mass. Assuming a democratic coupling structure we find $M_N approx 10 , mathrm{TeV}$. For the resonant production of DM, we find that it can be produced via freeze-in or freeze-out even with couplings of $mathcal{O} left( 10^{-5} right)$. However, the measurement of the Lyman-$alpha$ forest rules out the feeble coupled freeze-out case completely, while the resonant freeze-in production is only viable for $m_{DM} gtrsim 3 , mathring{keV}$.

Download