No Arabic abstract
Classification of stars and galaxies is a well-known astronomical problem that has been treated using different approaches, most of them relying on morphological information. In this paper, we tackle this issue using the low-resolution spectra from narrow band photometry, provided by the PAUS (Physics of the Accelerating Universe) survey. We find that, with the photometric fluxes from the 40 narrow band filters and without including morphological information, it is possible to separate stars and galaxies to very high precision, 98.4% purity with a completeness of 98.8% for objects brighter than I = 22.5. This precision is obtained with a Convolutional Neural Network as a classification algorithm, applied to the objects spectra. We have also applied the method to the ALHAMBRA photometric survey and we provide an updated classification for its Gold sample.
The Physics of the Accelerating Universe (PAU) Survey is an international project for the study of cosmological parameters associated with Dark Energy. PAUs 18-CCD camera (PAUCam), installed at the prime focus of the William Herschel Telescope at the Roque de los Muchachos Observatory (La Palma, Canary Islands), scans part of the northern sky, to collect low resolution spectral information of millions of galaxies with its unique set of 40 narrow-band filters in the optical range from 450 nm to 850 nm, and a set of 6 standard broad band filters. The PAU data management (PAUdm) team is in charge of treating the data, including data transfer from the observatory to the PAU Survey data center, hosted at Port dInformacio Cientifica (PIC). PAUdm is also in charge of the storage, data reduction and, finally, of making the results available to the scientific community. We describe the technical solutions adopted to cover different aspects of the PAU Survey data management, from the computing infrastructure to support the operations, to the software tools and web services for the data process orchestration and exploration. In particular we will focus on the PAU database, developed for the coordination of the different PAUdm tasks, and to preserve and guarantee the consistency of data and metadata.
Narrow-band imaging surveys allow the study of the spectral characteristics of galaxies without the need of performing their spectroscopic follow-up. In this work, we forward-model the Physics of the Accelerating Universe Survey (PAUS) narrow-band data. The aim is to improve the constraints on the spectral coefficients used to create the galaxy spectral energy distributions (SED) of the galaxy population model in Tortorelli et al. 2020. In that work, the model parameters were inferred from the Canada-France-Hawaii Telescope Legacy Survey (CFHTLS) data using Approximate Bayesian Computation (ABC). This led to stringent constraints on the B-band galaxy luminosity function parameters, but left the spectral coefficients only broadly constrained. To address that, we perform an ABC inference using CFHTLS and PAUS data. This is the first time our approach combining forward-modelling and ABC is applied simultaneously to multiple datasets. We test the results of the ABC inference by comparing the narrow-band magnitudes of the observed and simulated galaxies using Principal Component Analysis, finding a very good agreement. Furthermore, we prove the scientific potential of the constrained galaxy population model to provide realistic stellar population properties by measuring them with the SED fitting code CIGALE. We use CFHTLS broad-band and PAUS narrow-band photometry for a flux-limited ($mathrm{i}<22.5$) sample of galaxies spanning the redshift range $mathrm{0<z<1.0}$. We find that properties like stellar masses, star-formation rates, mass-weighted stellar ages and metallicities are in agreement within errors between observations and simulations. Overall, this work shows the ability of our galaxy population model to correctly forward-model a complex dataset such as PAUS and the ability to reproduce the diversity of galaxy properties at the redshift range spanned by CFHTLS and PAUS.
We present a mock catalogue for the Physics of the Accelerating Universe Survey (PAUS) and use it to quantify the competitiveness of the narrow band imaging for measuring spectral features and galaxy clustering. The mock agrees with observed number count and redshift distribution data. We demonstrate the importance of including emission lines in the narrow band fluxes. We show that PAUCam has sufficient resolution to measure the strength of the 4000AA{} break to the nominal PAUS depth. We predict the evolution of a narrow band luminosity function and show how this can be affected by the OII emission line. We introduce new rest frame broad bands (UV and blue) that can be derived directly from the narrow band fluxes. We use these bands along with D4000 and redshift to define galaxy samples and provide predictions for galaxy clustering measurements. We show that systematic errors in the recovery of the projected clustering due to photometric redshift errors in PAUS are significantly smaller than the expected statistical errors. The galaxy clustering on two halo scales can be recovered quantatively without correction, and all qualitative trends seen in the one halo term are recovered. In this analysis mixing between samples reduces the expected contrast between the one halo clustering of red and blue galaxies and demonstrates the importance of a mock catalogue for interpreting galaxy clustering results. The mock catalogue is available on request at https://cosmohub.pic.es/home.
We present the first measurements of the projected clustering and intrinsic alignments (IA) of galaxies observed by the Physics of the Accelerating Universe Survey (PAUS). With photometry in 40 narrow optical passbands ($450rm{nm}-850rm{nm}$), the quality of photometric redshift estimation is $sigma_{z} sim 0.01(1 + z)$ for galaxies in the $19,rm{deg}^{2}$ Canada-France-Hawaii Telescope Legacy Survey (CFHTLS) W3 field, allowing us to measure the projected 3D clustering and IA for flux-limited, faint galaxies ($i < 22.5$) out to $zsim0.8$. To measure two-point statistics, we developed, and tested with mock photometric redshift samples, `cloned random galaxy catalogues which can reproduce data selection functions in 3D and account for photometric redshift errors. In our fiducial colour-split analysis, we made robust null detections of IA for blue galaxies and tentative detections of radial alignments for red galaxies ($sim1-3sigma$), over scales of $0.1-18,h^{-1}rm{Mpc}$. The galaxy clustering correlation functions in the PAUS samples are comparable to their counterparts in a spectroscopic population from the Galaxy and Mass Assembly survey, modulo the impact of photometric redshift uncertainty which tends to flatten the blue galaxy correlation function, whilst steepening that of red galaxies. We investigate the sensitivity of our correlation function measurements to choices in the random catalogue creation and the galaxy pair-binning along the line of sight, in preparation for an optimised analysis over the full PAUS area.
Future astrophysical surveys such as J-PAS will produce very large datasets, which will require the deployment of accurate and efficient Machine Learning (ML) methods. In this work, we analyze the miniJPAS survey, which observed about 1 deg2 of the AEGIS field with 56 narrow-band filters and 4 ugri broad-band filters. We discuss the classification of miniJPAS sources into extended (galaxies) and point-like (e.g. stars) objects, a necessary step for the subsequent scientific analyses. We aim at developing an ML classifier that is complementary to traditional tools based on explicit modeling. In order to train and test our classifiers, we crossmatched the miniJPAS dataset with SDSS and HSC-SSP data. We trained and tested 6 different ML algorithms on the two crossmatched catalogs. As input for the ML algorithms we use the magnitudes from the 60 filters together with their errors, with and without the morphological parameters. We also use the mean PSF in the r detection band for each pointing. We find that the RF and ERT algorithms perform best in all scenarios. When analyzing the full magnitude range of 15<r<23.5 we find AUC=0.957 with RF when using only photometric information, and AUC=0.986 with ERT when using photometric and morphological information. Regarding feature importance, when using morphological parameters, FWHM is the most important feature. When using photometric information only, we observe that broad bands are not necessarily more important than narrow bands, and errors are as important as the measurements. ML algorithms can compete with traditional star/galaxy classifiers, outperforming the latter at fainter magnitudes (r>21). We use our best classifiers, with and without morphology, in order to produce a value added catalog available at https://j-pas.org/datareleases .