No Arabic abstract
We use deep $HST$ WFC3/IR imaging to study the Initial Mass Function (IMF) of the ultra faint dwarf galaxy Coma Berenices (Com Ber). Our observations reach the lowest stellar mass ever probed in a resolved galaxy, with 50% completeness at $sim 0.17$ M$_{odot}$. Unresolved background galaxies however limit our purity below $sim 0.23$ M$_{odot}$. If modeled with a single power law, we find that the IMF slope is $-1.45^{+0.29}_{-0.3}$ (68% credible intervals), compared to a Milky Way value of $-2.3$. For a broken power law, we obtain a low-mass slope of $-1.18_{-0.33}^{+0.49}$, a high-mass slope of $-1.88_{-0.49}^{+0.43}$ and a break mass of $0.57_{-0.08}^{+0.12}$ M$_{odot}$, compared to $-1.3$, $-2.3$ and 0.5 M$_{odot}$ for a Kroupa IMF. For a log-normal IMF model we obtain values of $0.33_{-0.16}^{+0.15}$ M$_{odot}$ for the location parameter and of $0.68_{-0.12}^{+0.17}$ for $sigma$ (0.22 M$_{odot}$ and 0.57 for the Chabrier system IMF). All three parametrizations produce similar agreement with the data. Our results agree with previous analysis of shallower optical HST data. However analysis of similar optical data of other dwarfs finds IMFs significantly more bottom-light than in the Milky Way. These results suggest two, non mutually exclusive, possibilities: that the discrepancy of the dwarf galaxies IMF with respect to the Milky Way is, at least partly, an artifact of using a single power law model, and that there is real variance in the IMF at low masses between the currently studied nearby dwarfs, with Com Ber being similar to the Milky Way, but other dwarfs differing significantly.
Using integral field spectroscopy, we demonstrate that gravity-sensitive absorption features in the zJ-band (0.9--1.35 micron) can constrain the low-mass stellar initial mass function (IMF) in the cores of two elliptical galaxies, M85 and M87. Compared to the visible bands, the near-infrared (NIR) is more sensitive to light from low-mass dwarf stars, whose relative importance is the primary subject of the debate over IMF variations in nearby galaxies. Our analysis compares the observed spectra to the latest stellar population synthesis models by employing two different methods: equivalent widths and spectral fitting. We find that the IMF slopes in M85 are similar to the canonical Milky Way IMF with a median IMF-mismatch parameter $alpha_{K} = 1.26$. In contrast, we find that the IMF in M87 is steeper than a Salpeter IMF with $alpha_{K} = 2.77$. The derived stellar population parameters, including the IMF slopes, are consistent with those from recent results in the visible bands based on spectroscopic and kinematic techniques. Certain elemental abundances, e.g. Na and Fe, have dramatic effects on the IMF-sensitive features and therefore the derived IMF slopes. We show evidence for a high [Na/H] $sim$ 0.65 dex in the core of M85 from two independent ion{Na}{1} absorption features. The high Na abundance may be the result of a recent galactic merger involving M85. This suggests that including [Na/H] in the stellar population model parameters is critical for constraining the IMF slopes in M85. These results confirm the viability of using NIR absorption features to investigate IMF variation in nearby galaxies.
Using the Oxford Short Wavelength Integral Field specTrograph (SWIFT), we trace radial variations of initial mass function (IMF) sensitive absorption features of three galaxies in the Coma cluster. We obtain resolved spectroscopy of the central 5kpc for the two central brightest-cluster galaxies (BCGs) NGC4889, NGC4874, and the BCG in the south-west group NGC4839, as well as unresolved data for NGC4873 as a low-$sigma_*$ control. We present radial measurements of the IMF-sensitive features sodium NaI$_{rm{SDSS}}$, calcium triplet CaT and iron-hydride FeH0.99, along with the magnesium MgI0.88 and titanium oxide TiO0.89 features. We employ two separate methods for both telluric correction and sky-subtraction around the faint FeH feature to verify our analysis. Within NGC4889 we find strong gradients of NaI$_{rm{SDSS}}$ and CaT but a flat FeH profile, which from comparing to stellar population synthesis models, suggests an old, $alpha$-enhanced population with a Chabrier, or even bottom-light IMF. The age and abundance is in line with previous studies but the normal IMF is in contrast to recent results suggesting an increased IMF slope with increased velocity dispersion. We measure flat NaI$_{rm{SDSS}}$ and FeH profiles within NGC4874 and determine an old, possibly slightly $alpha$-enhanced and Chabrier IMF population. We find an $alpha$-enhanced, Chabrier IMF population in NGC4873. Within NGC4839 we measure both strong NaI$_{rm{SDSS}}$ and strong FeH, although with a large systematic uncertainty, suggesting a possible heavier IMF. The IMFs we infer for these galaxies are supported by published dynamical modelling. We stress that IMF constraints should be corroborated by further spectral coverage and independent methods on a galaxy-by-galaxy basis.
Massive relic galaxies formed the bulk of their stellar component before z~2 and have remained unaltered since then. Therefore, they represent a unique opportunity to study in great detail the frozen stellar population properties of those galaxies that populated the primitive Universe. We have combined optical to near-infrared line-strength indices in order to infer, out to 1.5 Reff, the IMF of the nearby relic massive galaxy NGC 1277. The IMF of this galaxy is bottom-heavy at all radii, with the fraction of low-mass stars being at least a factor of two larger than that found in the Milky Way. The excess of low-mass stars is present throughout the galaxy, while the velocity dispersion profile shows a strong decrease with radius. This behaviour suggests that local velocity dispersion is not the only driver of the observed IMF variations seen among nearby early-type galaxies. In addition, the excess of low-mass stars shown in NGC 1277 could reflect the effect on the IMF of dramatically different and intense star formation processes at z~2, compared to the less extreme conditions observed in the local Universe.
We present new evidence for a variable stellar initial mass function (IMF) in massive early-type galaxies, using high-resolution, near-infrared spectroscopy from the Folded-port InfraRed Echellette spectrograph (FIRE) on the Magellan Baade Telescope at Las Campanas Observatory. In this pilot study, we observe several gravity-sensitive metal lines between 1.1 $mu$m and 1.3 $mu$m in eight highly-luminous ($L sim 10 L_*$) nearby galaxies. Thanks to the broad wavelength coverage of FIRE, we are also able to observe the Ca II triplet feature, which helps with our analysis. After measuring the equivalent widths (EWs) of these lines, we notice mild to moderate trends between EW and central velocity dispersion ($sigma$), with some species (K I, Na I, Mn I) showing a positive EW-$sigma$ correlation and others (Mg I, Ca II, Fe I) a negative one. To minimize the effects of metallicity, we measure the ratio $R$ = [EW(K I) / EW(Mg I)], finding a significant systematic increase in this ratio with respect to $sigma$. We then probe for variations in the IMF by comparing the measured line ratios to the values expected in several IMF models. Overall, we find that low-mass galaxies ($sigma sim 100$ km s$^{-1}$) favor a Chabrier IMF, while high-mass galaxies ($sigma sim 350$ km s$^{-1}$) are better described with a steeper (dwarf-rich) IMF slope. While we note that our galaxy sample is small and may suffer from selection effects, these initial results are still promising. A larger sample of galaxies will therefore provide an even clearer picture of IMF trends in this regime.
We present the core mass function (CMF) of the massive star-forming clump G33.92+0.11 using 1.3 mm observations obtained with the Atacama Large Millimeter/submillimeter Array (ALMA). With a resolution of 1000 au, this is one of the highest resolution CMF measurements to date. The CMF is corrected by flux and number incompleteness to obtain a sample that is complete for gas masses $Mgtrsim2.0 M_odot$. The resulting CMF is well represented by a power-law function ($dN/dlog Mpropto M^Gamma$), whose slope is determined using two different approaches: $i)$ by least-squares fitting of power-law functions to the flux- and number-corrected CMF, and $ii)$ by comparing the observed CMF to simulated samples with similar incompleteness. We provide a prescription to quantify and correct a flattening bias affecting the slope fits in the first approach, which is caused by small-sample or edge effects when the data is represented by either classical histograms or a kernel density estimate, respectively. The resulting slopes from both approaches are in good agreement each other, with $Gamma=-1.11_{-0.11}^{+0.12}$ being our adopted value. Although this slope appears to be slightly flatter than the Salpeter slope $Gamma=-1.35$ for the stellar initial mass function (IMF), we find from Monte Carlo simulations that the CMF in G33.92+0.11 is statistically indistinguishable from the Salpeter representation of the stellar IMF. Our results are consistent with the idea that the form of the IMF is inherited from the CMF, at least at high masses and when the latter is observed at high-enough resolution.