We report the discovery of a compact multi-planet system orbiting the relatively nearby (78pc) and bright ($K=8.9$) K-star, K2-266 (EPIC248435473). We identify up to six possible planets orbiting K2-266 with estimated periods of P$_b$ = 0.66, P$_{.02}$ = 6.1, P$_c$ = 7.8, P$_d$ = 14.7, P$_e$ = 19.5, and P$_{.06}$ = 56.7 days and radii of R$_P$ = 3.3 R$_{oplus}$, 0.646 R$_{oplus}$, 0.705 R$_{oplus}$, 2.93 R$_{oplus}$, 2.73 R$_{oplus}$, and 0.90 R$_{oplus}$, respectively. We are able to confirm the planetary nature of two of these planets (d & e) from analyzing their transit timing variations ($m_d= 8.9_{-3.8}^{+5.7} M_oplus$ and $m_e=14.3_{-5.0}^{+6.4} M_oplus$), confidently validate the planetary nature of two other planets (b & c), and classify the last two as planetary candidates (K2-266.02 & .06). From a simultaneous fit of all 6 possible planets, we find that K2-266 bs orbit has an inclination of 75.32$^{circ}$ while the other five planets have inclinations of 87-90$^{circ}$. This observed mutual misalignment may indicate that K2-266 b formed differently from the other planets in the system. The brightness of the host star and the relatively large size of the sub-Neptune sized planets d and e make them well-suited for atmospheric characterization efforts with facilities like the Hubble Space Telescope and upcoming James Webb Space Telescope. We also identify an 8.5-day transiting planet candidate orbiting EPIC248435395, a co-moving companion to K2-266.