No Arabic abstract
Fixing a positive integer $r$ and $0 le k le r-1$, define $f^{langle r,k rangle}$ for every formal power series $f$ as $ f(x) = f^{langle r,0 rangle}(x^r)+xf^{langle r,1 rangle}(x^r)+ cdots +x^{r-1}f^{langle r,r-1 rangle}(x^r).$ Jochemko recently showed that the polynomial $U^{n}_{r,k}, h(x) := left( (1+x+cdots+x^{r-1})^{n} h(x) right)^{langle r,k rangle}$ has only nonpositive zeros for any $r ge deg h(x) -k$ and any positive integer $n$. As a consequence, Jochemko confirmed a conjecture of Beck and Stapledon on the Ehrhart polynomial $h(x)$ of a lattice polytope of dimension $n$, which states that $U^{n}_{r,0},h(x)$ has only negative, real zeros whenever $rge n$. In this paper, we provide an alternative approach to Beck and Stapledons conjecture by proving the following general result: if the polynomial sequence $left( h^{langle r,r-i rangle}(x)right)_{1le i le r}$ is interlacing, so is $left( U^{n}_{r,r-i}, h(x) right)_{1le i le r}$. Our result has many other interesting applications. In particular, this enables us to give a new proof of Savage and Visontais result on the interlacing property of some refinements of the descent generating functions for colored permutations. Besides, we derive a Carlitz identity for refined colored permutations.
It was observed by Bump et al. that Ehrhart polynomials in a special family exhibit properties similar to the Riemann {zeta} function. The construction was generalized by Matsui et al. to a larger family of reflexive polytopes coming from graphs. We prove several conjectures confirming when such polynomials have zeros on a certain line in the complex plane. Our main new method is to prove a stronger property called interlacing.
Elements of the Riordan group $cal R$ over a field $mathbb F$ of characteristic zero are infinite lower triangular matrices which are defined in terms of pairs of formal power series. We wish to bring to the forefront, as a tool in the theory of Riordan groups, the use of multiplicative roots $a(x)^frac{1}{n}$ of elements $a(x)$ in the ring of formal power series over $mathbb F$ . Using roots, we give a Normal Form for non-constant formal power series, we prove a surprising simple Composition-Cancellation Theorem and apply this to show that, for a major class of Riordan elements (i.e., for non-constant $g(x)$ and appropriate $F(x)$), only one of the two basic conditions for checking that $big(g(x), , F(x)big)$ has order $n$ in the group $cal R$ actually needs to be checked. Using all this, our main result is to generalize C. Marshall [Congressus Numerantium, 229 (2017), 343-351] and prove: Given non-constant $g(x)$ satisfying necessary conditions, there exists a unique $F(x)$, given by an explicit formula, such that $big(g(x), , F(x)big)$ is an involution in $cal R$. Finally, as examples, we apply this theorem to ``aerated series $h(x) = g(x^q), q text{odd}$, to find the unique $K(x)$ such that $big(h(x), K(x)big)$ is an involution.
We prove a sharp analogue of Minkowskis inhomogeneous approximation theorem over fields of power series $mathbb{F}_q((T^{-1}))$. Furthermore, we study the approximation to a given point $underline{y}$ in $mathbb{F}_q((T^{-1}))^2$ by the $SL_2(mathbb{F}_q[T])$-orbit of a given point $underline{x}$ in $mathbb{F}_q((T^{-1}))^2$.
We investigate a class of power series occurring in some problems in quantum optics. Their coefficients are either Gegenbauer or Laguerre polynomials multiplied by binomial coefficients. Although their sums have been known for a long time, we employ here a different method to recover them as higher-order derivatives of the generating function of the given orthogonal polynomials. The key point in our proof consists in exploiting a specific functional equation satisfied by the generating function in conjunction with Cauchys integral formula for the derivatives of a holomorphic function. Special or limiting cases of Gegenbauer polynomials include the Legendre and Chebyshev polynomials. The series of Hermite polynomials is treated in a straightforward way, as well as an asymptotic case of either the Gegenbauer or the Laguerre series. Further, we have succeeded in evaluating the sum of a similar power series which is a higher-order derivative of Mehlers generating function. As a prerequisite, we have used a convenient factorization of the latter that enabled us to employ a particular Laguerre expansion. Mehlers summation formula is then applied in quantum mechanics in order to retrieve the propagator of a linear harmonic oscillator.
This article concerns the computational problem of counting the lattice points inside convex polytopes, when each point must be counted with a weight associated to it. We describe an efficient algorithm for computing the highest degree coefficients of the weighted Ehrhart quasi-polynomial for a rational simple polytope in varying dimension, when the weights of the lattice points are given by a polynomial function h. Our technique is based on a refinement of an algorithm of A. Barvinok [Computing the Ehrhart quasi-polynomial of a rational simplex, Math. Comp. 75 (2006), pp. 1449--1466] in the unweighted case (i.e., h = 1). In contrast to Barvinoks method, our method is local, obtains an approximation on the level of generating functions, handles the general weighted case, and provides the coefficients in closed form as step polynomials of the dilation. To demonstrate the practicality of our approach we report on computational experiments which show even our simple implementation can compete with state of the art software.