No Arabic abstract
We report on a comprehensive experimental and theoretical study of optical third harmonic generation (THG) on the exciton-polariton resonances in the zinc-blende semiconductors GaAs, CdTe, and ZnSe subject to an external magnetic field, representing a topic that had remained unexplored so far. In these crystals, crystallographic THG is allowed in the electric-dipole approximation, so that no strong magnetic-field-induced changes of the THG are expected. Therefore, it comes as a total surprise that we observe a drastic enhancement of the THG intensity by a factor of fifty for the $1s$-exciton-polariton in GaAs in magnetic fields up to 10 T. In contrast, the corresponding enhancement is moderate for CdTe and almost neglectful for ZnSe. In order to explain this strong variation, we develop a microscopic theory accounting for the optical harmonics generation on exciton-polaritons and analyze the THG mechanisms induced by the magnetic field. The calculations show that the increase of THG intensity is dominated by the magnetic field enhancement of the exciton oscillator strength which is particularly strong for GaAs in the studied range of field strengths. The much weaker increase of THG intensity in CdTe and ZnSe is explained by the considerably larger exciton binding energies, leading to a weaker modification of their oscillator strengths by the magnetic field.
Magnetoelectroluminescence (MEL) of organic semiconductor has been experimentally tuned by adopting blended emitting layer consisting of both hole and electron transporting materials. A theoretical model considering intermolecular quantum correlation is proposed to demonstrate two fundamental issues: (1) two mechanisms, spin scattering and spin mixing, dominate the two different steps respectively in the process of the magnetic field modulated generation of exciton; (2) the hopping rate of carriers determines the intensity of MEL. Calculation successfully predicts the increase of singlet excitons in low field with little change of triplet exciton population.
Recently, atomically thin PdSe$_2$ semiconductors with rare pentagonal Se-Pd-Se monolayers were synthesized and were also found to possess superior properties such as ultrahigh air stability, and high carrier mobility, thus offering a new family of two-dimensional (2D) materials for exploration of 2D semiconductor physics and for applications in advanced opto-electronic and nonlinear photonic devices. In this work, we systematically study the nonlinear optical (NLO) responses [namely, bulk photovoltaic effect (BPVE), second-harmonic generation (SHG) and linear electric-optic (LEO) effect] of noncentrosymmetric bilayer (BL) and four-layer (FL) PdS$_2$ and PdSe$_2$ by applying the first-principles density functional theory with the generalized gradient approximation plus scissors-correction. First of all, the shift current conductivity is in the order of 130 $mu$A/V$^2$, being very high compared to known BPVE materials. Similarly, their injection current susceptibilities are in the order of 100$times$10$^8$A/V$^2$s, again being large. Secondly, the SHG coefficients ($chi^{(2)}$) of these materials are also large, being one order higher than that of the best-known few-layer group 6B transition metal dichalcogenides. For example, the maximum magnitude of $chi^{(2)}$ can reach 1.4$times$10$^3$ pm/V for BL PdSe$_2$ at 1.9 eV and 1.2$times$10$^3$ pm/V at 3.1 eV for BL PdS$_2$. Thirdly we find significant LEO coefficients for these structures in the low photon energy. All these indicate that 2D PdX$_2$ semiconductors will find promising NLO applications. Fourthly, we find that the large BPVE and SHG of the few-layer PdX$_2$ structures are due to strong intralayer directional covalent bonding and also 2D quantum confinement.
The condensation of half-light half-matter exciton polaritons in semiconductor optical cavities is a striking example of macroscopic quantum coherence in a solid state platform. Quantum coherence is possible only when there are strong interactions between the exciton polaritons provided by their excitonic constituents. Rydberg excitons with high principle value exhibit strong dipole-dipole interactions in cold atoms. However, polaritons with the excitonic constituent that is an excited state, namely Rydberg exciton polaritons (REPs), have not yet been experimentally observed. Here, for the first time, we observe the formation of REPs in a single crystal CsPbBr3 perovskite cavity without any external fields. These polaritons exhibit strong nonlinear behavior that leads to a coherent polariton condensate with a prominent blue shift. Furthermore, the REPs in CsPbBr3 are highly anisotropic and have a large extinction ratio, arising from the perovskites orthorhombic crystal structure. Our observation not only sheds light on the importance of many-body physics in coherent polariton systems involving higher-order excited states, but also paves the way for exploring these coherent interactions for solid state quantum optical information processing.
We study nonlinear effects in two-dimensional photonic metasurfaces supporting topologically-protected helical edge states at the nanoscale. We observe strong third-harmonic generation mediated by optical nonlinearities boosted by multipolar Mie resonances of silicon nanoparticles. Variation of the pump-beam wavelength enables independent high-contrast imaging of either bulk modes or spin-momentum-locked edge states. We demonstrate topology-driven tunable localization of the generated harmonic fields and map the pseudospin-dependent unidirectional waveguiding of the edge states bypassing sharp corners. Our observations establish dielectric metasurfaces as a promising platform for the robust generation and transport of photons in topological photonic nanostructures.
As device miniaturization approaches the atomic limit, it becomes highly desirable to exploit novel paradigms for tailoring electronic structures and carrier dynamics in materials. Elastic strain can in principle be applied to achieve reversible and fast control of such properties, but it remains a great challenge to create and utilize precisely controlled inhomogeneous deformation in semiconductors. Here, we take a combined experimental and theoretical approach to demonstrate that elastic strain-gradient can be created controllably and reversibly in ZnO micro/nanowires. In particular, we show that the inhomogeneous strain distribution creates an effective field that fundamentally alters the dynamics of the neutral excitons. As the basic principles behind these results are quite generic and applicable to most semiconductors, this work points to a novel route to a wide range of applications in electronics, optoelectronics, and photochemistry.