Do you want to publish a course? Click here

Classifying Object Manipulation Actions based on Grasp-types and Motion-Constraints

77   0   0.0 ( 0 )
 Added by Kartik Gupta
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

In this work, we address a challenging problem of fine-grained and coarse-grained recognition of object manipulation actions. Due to the variations in geometrical and motion constraints, there are different manipulations actions possible to perform different sets of actions with an object. Also, there are subtle movements involved to complete most of object manipulation actions. This makes the task of object manipulation action recognition difficult with only just the motion information. We propose to use grasp and motion-constraints information to recognise and understand action intention with different objects. We also provide an extensive experimental evaluation on the recent Yale Human Grasping dataset consisting of large set of 455 manipulation actions. The evaluation involves a) Different contemporary multi-class classifiers, and binary classifiers with one-vs-one multi- class voting scheme, b) Differential comparisons results based on subsets of attributes involving information of grasp and motion-constraints, c) Fine-grained and Coarse-grained object manipulation action recognition based on fine-grained as well as coarse-grained grasp type information, and d) Comparison between Instance level and Sequence level modeling of object manipulation actions. Our results justifies the efficacy of grasp attributes for the task of fine-grained and coarse-grained object manipulation action recognition.

rate research

Read More

Looking at a persons hands one often can tell what the person is going to do next, how his/her hands are moving and where they will be, because an actors intentions shape his/her movement kinematics during action execution. Similarly, active systems with real-time constraints must not simply rely on passive video-segment classification, but they have to continuously update their estimates and predict future actions. In this paper, we study the prediction of dexterous actions. We recorded from subjects performing different manipulation actions on the same object, such as squeezing, flipping, washing, wiping and scratching with a sponge. In psychophysical experiments, we evaluated human observers skills in predicting actions from video sequences of different length, depicting the hand movement in the preparation and execution of actions before and after contact with the object. We then developed a recurrent neural network based method for action prediction using as input patches around the hand. We also used the same formalism to predict the forces on the finger tips using for training synchronized video and force data streams. Evaluations on two new datasets showed that our system closely matches human performance in the recognition task, and demonstrate the ability of our algorithm to predict what and how a dexterous action is performed.
This paper proposes a novel approach to performing in-grasp manipulation: the problem of moving an object with reference to the palm from an initial pose to a goal pose without breaking or making contacts. Our method to perform in-grasp manipulation uses kinematic trajectory optimization which requires no knowledge of dynamic properties of the object. We implement our approach on an Allegro robot hand and perform thorough experiments on 10 objects from the YCB dataset. However, the proposed method is general enough to generate motions for most objects the robot can grasp. Experimental result support the feasibillty of its application across a variety of object shapes. We explore the adaptability of our approach to additional task requirements by including collision avoidance and joint space smoothness costs. The grasped object avoids collisions with the environment by the use of a signed distance cost function. We reduce the effects of unmodeled object dynamics by requiring smooth joint trajectories. We additionally compensate for errors encountered during trajectory execution by formulating an object pose feedback controller.
133 - Yilin Wang , Jiayi Ye 2021
Video classification and analysis is always a popular and challenging field in computer vision. It is more than just simple image classification due to the correlation with respect to the semantic contents of subsequent frames brings difficulties for video analysis. In this literature review, we summarized some state-of-the-art methods for multi-label video classification. Our goal is first to experimentally research the current widely used architectures, and then to develop a method to deal with the sequential data of frames and perform multi-label classification based on automatic content detection of video.
Grasp detection with consideration of the affiliations between grasps and their owner in object overlapping scenes is a necessary and challenging task for the practical use of the robotic grasping approach. In this paper, a robotic grasp detection algorithm named ROI-GD is proposed to provide a feasible solution to this problem based on Region of Interest (ROI), which is the region proposal for objects. ROI-GD uses features from ROIs to detect grasps instead of the whole scene. It has two stages: the first stage is to provide ROIs in the input image and the second-stage is the grasp detector based on ROI features. We also contribute a multi-object grasp dataset, which is much larger than Cornell Grasp Dataset, by labeling Visual Manipulation Relationship Dataset. Experimental results demonstrate that ROI-GD performs much better in object overlapping scenes and at the meantime, remains comparable with state-of-the-art grasp detection algorithms on Cornell Grasp Dataset and Jacquard Dataset. Robotic experiments demonstrate that ROI-GD can help robots grasp the target in single-object and multi-object scenes with the overall success rates of 92.5% and 83.8% respectively.
77 - Siwei Chen , Xiao Ma , Yunfan Lu 2021
This paper presents Particle-based Object Manipulation (Prompt), a new approach to robot manipulation of novel objects ab initio, without prior object models or pre-training on a large object data set. The key element of Prompt is a particle-based object representation, in which each particle represents a point in the object, the local geometric, physical, and other features of the point, and also its relation with other particles. Like the model-based analytic approaches to manipulation, the particle representation enables the robot to reason about the objects geometry and dynamics in order to choose suitable manipulation actions. Like the data-driven approaches, the particle representation is learned online in real-time from visual sensor input, specifically, multi-view RGB images. The particle representation thus connects visual perception with robot control. Prompt combines the benefits of both model-based reasoning and data-driven learning. We show empirically that Prompt successfully handles a variety of everyday objects, some of which are transparent. It handles various manipulation tasks, including grasping, pushing, etc,. Our experiments also show that Prompt outperforms a state-of-the-art data-driven grasping method on the daily objects, even though it does not use any offline training data.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا