Do you want to publish a course? Click here

A Scalable Machine Learning Approach for Inferring Probabilistic US-LI-RADS Categorization

51   0   0.0 ( 0 )
 Added by Imon Banerjee
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

We propose a scalable computerized approach for large-scale inference of Liver Imaging Reporting and Data System (LI-RADS) final assessment categories in narrative ultrasound (US) reports. Although our model was trained on reports created using a LI-RADS template, it was also able to infer LI-RADS scoring for unstructured reports that were created before the LI-RADS guidelines were established. No human-labelled data was required in any step of this study; for training, LI-RADS scores were automatically extracted from those reports that contained structured LI-RADS scores, and it translated the derived knowledge to reasoning on unstructured radiology reports. By providing automated LI-RADS categorization, our approach may enable standardizing screening recommendations and treatment planning of patients at risk for hepatocellular carcinoma, and it may facilitate AI-based healthcare research with US images by offering large scale text mining and data gathering opportunities from standard hospital clinical data repositories.



rate research

Read More

We consider a collaborative learning scenario in which multiple data-owners wish to jointly train a logistic regression model, while keeping their individual datasets private from the other parties. We propose COPML, a fully-decentralized training framework that achieves scalability and privacy-protection simultaneously. The key idea of COPML is to securely encode the individual datasets to distribute the computation load effectively across many parties and to perform the training computations as well as the model updates in a distributed manner on the securely encoded data. We provide the privacy analysis of COPML and prove its convergence. Furthermore, we experimentally demonstrate that COPML can achieve significant speedup in training over the benchmark protocols. Our protocol provides strong statistical privacy guarantees against colluding parties (adversaries) with unbounded computational power, while achieving up to $16times$ speedup in the training time against the benchmark protocols.
FDA has been promoting enrollment practices that could enhance the diversity of clinical trial populations, through broadening eligibility criteria. However, how to broaden eligibility remains a significant challenge. We propose an AI approach to Cohort Optimization (AICO) through transformer-based natural language processing of the eligibility criteria and evaluation of the criteria using real-world data. The method can extract common eligibility criteria variables from a large set of relevant trials and measure the generalizability of trial designs to real-world patients. It overcomes the scalability limits of existing manual methods and enables rapid simulation of eligibility criteria design for a disease of interest. A case study on breast cancer trial design demonstrates the utility of the method in improving trial generalizability.
Statistical relational frameworks such as Markov logic networks and probabilistic soft logic (PSL) encode model structure with weighted first-order logical clauses. Learning these clauses from data is referred to as structure learning. Structure learning alleviates the manual cost of specifying models. However, this benefit comes with high computational costs; structure learning typically requires an expensive search over the space of clauses which involves repeated optimization of clause weights. In this paper, we propose the first two approaches to structure learning for PSL. We introduce a greedy search-based algorithm and a novel optimization method that trade-off scalability and approximations to the structure learning problem in varying ways. The highly scalable optimization method combines data-driven generation of clauses with a piecewise pseudolikelihood (PPLL) objective that learns model structure by optimizing clause weights only once. We compare both methods across five real-world tasks, showing that PPLL achieves an order of magnitude runtime speedup and AUC gains up to 15% over greedy search.
143 - Lei Zhou , Liang Ding , Kevin Duh 2021
In the field of machine learning, the well-trained model is assumed to be able to recover the training labels, i.e. the synthetic labels predicted by the model should be as close to the ground-truth labels as possible. Inspired by this, we propose a self-guided curriculum strategy to encourage the learning of neural machine translation (NMT) models to follow the above recovery criterion, where we cast the recovery degree of each training example as its learning difficulty. Specifically, we adopt the sentence level BLEU score as the proxy of recovery degree. Different from existing curricula relying on linguistic prior knowledge or third-party language models, our chosen learning difficulty is more suitable to measure the degree of knowledge mastery of the NMT models. Experiments on translation benchmarks, including WMT14 English$Rightarrow$German and WMT17 Chinese$Rightarrow$English, demonstrate that our approach can consistently improve translation performance against strong baseline Transformer.
103 - Junjie Hu , Graham Neubig 2021
Neural machine translation (NMT) is sensitive to domain shift. In this paper, we address this problem in an active learning setting where we can spend a given budget on translating in-domain data, and gradually fine-tune a pre-trained out-of-domain NMT model on the newly translated data. Existing active learning methods for NMT usually select sentences based on uncertainty scores, but these methods require costly translation of full sentences even when only one or two key phrases within the sentence are informative. To address this limitation, we re-examine previous work from the phrase-based machine translation (PBMT) era that selected not full sentences, but rather individual phrases. However, while incorporating these phrases into PBMT systems was relatively simple, it is less trivial for NMT systems, which need to be trained on full sequences to capture larger structural properties of sentences unique to the new domain. To overcome these hurdles, we propose to select both full sentences and individual phrases from unlabelled data in the new domain for routing to human translators. In a German-English translation task, our active learning approach achieves consistent improvements over uncertainty-based sentence selection methods, improving up to 1.2 BLEU score over strong active learning baselines.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا