Do you want to publish a course? Click here

Profile of a Galactic Spherical Cloud of Self-Gravitating Fermions

69   0   0.0 ( 0 )
 Added by Robi Peschanski
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

The field which binds a thermal fermionic cloud is defined as a Hartree integral upon its density. In turn, the density results from the field via a Thomas-Fermi occupation of the local phase space. This defines a complete theory of all properties and observables for the cloud. As an application to dark matter halos, comparisons with astronomic data on dwarf spheroidal galaxies are provided and discussed. Estimates of the elementary fermion mass are obtained, serving as a phase-space bound on fermionic dark matter.



rate research

Read More

174 - Hyeong-Chan Kim 2017
We study the heat capacity of a static system of self-gravitating radiations analytically in the context of general relativity. To avoid the complexity due to a conical singularity at the center, we excise the central part and replace it with a regular spherically symmetric distribution of matters of which specifications we are not interested in. We assume that the mass inside the inner boundary and the locations of the inner and the outer boundaries are given. Then, we derive a formula relating the variations of physical parameters at the outer boundary with those at the inner boundary. Because there is only one free variation at the inner boundary, the variations at the outer boundary are related, which determines the heat capacity. To get an analytic form for the heat capacity, we use the thermodynamic identity $delta S_{rm rad} = beta delta M_{rm rad}$ additionally, which is derived from the variational relation of the entropy formula with the restriction that the mass inside the inner boundary does not change. Even if the radius of the inner boundary of the shell goes to zero, in the presence of a central conical singularity, the heat capacity does not go to the form of the regular sphere. An interesting discovery is that another legitimate temperature can be defined at the inner boundary which is different from the asymptotic one $beta^{-1}$.
When an open system of classical point particles interacting by Newtonian gravity collapses and relaxes violently, an arbitrary amount of energy may in principle be carried away by particles which escape to infinity. We investigate here, using numerical simulations, how this released energy and other related quantities (notably the binding energy and size of the virialized structure) depends on the initial conditions, for the one parameter family of starting configurations given by randomly distributing N cold particles in a spherical volume. Previous studies have established that the minimal size reached by the system scales approximately as N^{-1/3}, a behaviour which follows trivially when the growth of perturbations (which regularize the singularity of the cold collapse in the infinite N limit) are assumed to be unaffected by the boundaries. Our study shows that the energy ejected grows approximately in proportion to N^{1/3}, while the fraction of the initial mass ejected grows only very slowly with N, approximately logarithmically, in the range of N simulated. We examine in detail the mechanism of this mass and energy ejection, showing explicitly that it arises from the interplay of the growth of perturbations with the finite size of the system. A net lag of particles compared to their uniform spherical collapse trajectories develops first at the boundaries and then propagates into the volume during the collapse. Particles in the outer shells are then ejected as they scatter through the time dependent potential of an already re-expanding central core. Using modified initial configurations we explore the importance of fluctuations at different scales, and discreteness (i.e. non-Vlasov) effects in the dynamics.
93 - Siyao Xu , Alex Lazarian 2020
Externally driven interstellar turbulence plays an important role in shaping the density structure in molecular clouds. Here we study the dynamical role of internally driven turbulence in a self-gravitating molecular cloud core. Depending on the initial conditions and evolutionary stages, we find that a self-gravitating core in the presence of gravity-driven turbulence can undergo constant, decelerated, and accelerated infall, and thus has various radial velocity profiles. In the gravity-dominated central region, a higher level of turbulence results in a lower infall velocity, a higher density, and a lower mass accretion rate. As an important implication of this study, efficient reconnection diffusion of magnetic fields against the gravitational drag naturally occurs due to the gravity-driven turbulence, without invoking externally driven turbulence.
We derive the non-relativistic limit of a massive vector field. We show that the Cartesian spatial components of the vector behave as three identical, non-interacting scalar fields. We find classes of spherical, cylindrical, and planar self-gravitating vector solitons in the Newtonian limit. The gravitational properties of the lowest-energy vector solitons$mathrm{-}$the gravitational potential and density field$mathrm{-}$depend only on the net mass of the soliton and the vector particle mass. In particular, these self-gravitating, ground-state vector solitons are independent of the distribution of energy across the vector field components, and are indistinguishable from their scalar-field counterparts. Fuzzy Vector Dark Matter models can therefore give rise to halo cores with identical observational properties to the ones in scalar Fuzzy Dark Matter models. We also provide novel hedgehog vector soliton solutions, which cannot be observed in scalar-field theories. The gravitational binding of the lowest-energy hedgehog halo is about three times weaker than the ground-state vector soliton. Finally, we show that no spherically symmetric solitons exist with a divergence-free vector field.
In the mean field limit, isolated gravitational systems often evolve towards a steady state through a violent relaxation phase. One question is to understand the nature of this relaxation phase, in particular the role of radial instabilities in the establishment/destruction of the steady profile. Here, through a detailed phase-space analysis based both on a spherical Vlasov solver, a shell code and a $N$-body code, we revisit the evolution of collisionless self-gravitating spherical systems with initial power-law density profiles $rho(r) propto r^n$, $0 leq n leq -1.5$, and Gaussian velocity dispersion. Two sub-classes of models are considered, with initial virial ratios $eta=0.5$ (warm) and $eta=0.1$ (cool). Thanks to the numerical techniques used and the high resolution of the simulations, our numerical analyses are able, for the first time, to show the clear separation between two or three well known dynamical phases: (i) the establishment of a spherical quasi-steady state through a violent relaxation phase during which the phase-space density displays a smooth spiral structure presenting a morphology consistent with predictions from self-similar dynamics, (ii) a quasi-steady state phase during which radial instabilities can take place at small scales and destroy the spiral structure but do not change quantitatively the properties of the phase-space distribution at the coarse grained level and (iii) relaxation to non spherical state due to radial orbit instabilities for $n leq -1$ in the cool case.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا