No Arabic abstract
We propose a methodological framework to perform forward asteroseismic modeling of stars with a convective core, based on gravity-mode oscillations. These probe the near-core region in the deep stellar interior. The modeling relies on a set of observed high-precision oscillation frequencies of low-degree coherent gravity modes with long lifetimes and their observational uncertainties. Identification of the mode degree and azimuthal order is assumed to be achieved from rotational splitting and/or from period spacing patterns. This paper has two major outcomes. The first is a comprehensive list and discussion of the major uncertainties of theoretically predicted gravity-mode oscillation frequencies based on linear pulsation theory, caused by fixing choices of the input physics for evolutionary models. Guided by a hierarchy among these uncertainties of theoretical frequencies, we subsequently provide a global methodological scheme to achieve forward asteroseismic modeling. We properly take into account correlations amongst the free parameters included in stellar models. Aside from the stellar mass, metalicity and age, the major parameters to be estimated are the near-core rotation rate, the amount of convective core overshooting, and the level of chemical mixing in the radiative zones. This modeling scheme allows for maximum likelihood estimation of the stellar parameters for fixed input physics of the equilibrium models, followed by stellar model selection considering various choices of the input physics. Our approach uses the Mahalanobis distance instead of the often used $chi^2$ statistic and includes heteroscedasticity. It provides estimation of the unknown variance of the theoretically predicted oscillation frequencies.
A major uncertainty in the theory of stellar evolution is the angular momentum distribution inside stars and its change during stellar life. We compose a sample of 67 stars in the core-hydrogen burning phase with a $log,g$ value from high-resolution spectroscopy, as well as an asteroseismic estimate of the near-core rotation rate derived from gravity-mode oscillations detected in space photometry. This assembly includes 8 B-type stars and 59 AF-type stars, covering a mass range from 1.4 to 5,M$_odot$, i.e., it concerns intermediate-mass stars born with a well-developed convective core. The sample covers projected surface rotation velocities $vsin,i in[9,242],$km,s$^{-1}$ and core rotation rates up to $26mu$Hz, which corresponds to 50% of the critical rotation frequency. We find deviations from rigid rotation to be moderate in the single stars of this sample. We place the near-core rotation rates in an evolutionary context and find that the core rotation must drop drastically before or during the short phase between the end of the core-hydrogen burning and the onset of core-helium burning. We compute the spin parameter, which is the ratio of twice the rotation rate to the mode frequency (also known as the inverse Rossby number), for 1682 gravity modes and find the majority (95%) to occur in the sub-inertial regime. The ten stars with Rossby modes have spin parameters between 14 and 30, while the gravito-inertial modes cover the range from 1 to 15.
We compare evolved stellar models, which match Procyons mass and position in the HR diagram, to current ground-based asteroseismic observations. Diffusion of helium and metals along with two conventional core overshoot descriptions and the Kuhfuss nonlocal theory of convection are considered. We establish that one of the two published asteroseismic data reductions for Procyon, which mainly differ in their identification of even versus odd l-values, is a significantly more probable and self-consistent match to our models than the other. The most probable models according to our Bayesian analysis have evolved to just short of turnoff, still retaining a hydrogen convective core. Our most probable models include Y and Z diffusion and have conventional core overshoot between 0.9 and 1.5 pressure scale heights, which increases the outer radius of the convective core by between 22% to 28%, respectively. We discuss the significance of this comparatively higher than expected core overshoot amount in terms of internal mixing during evolution. The parameters of our most probable models are similar regardless of whether adiabatic or nonadiabatic model p-mode frequencies are compared to the observations, although, the Bayesian probabilities are greater when the nonadiabatic model frequencies are used. All the most probable models (with or without core overshoot, adiabatic or nonadiabatic model frequencies, diffusion or no diffusion, including priors for the observed HRD location and mass or not) have masses that are within one sigma of the observed mass 1.497+/-0.037 Msun.
It has been known for several decades that transport of chemical elements is induced by the process of microscopic atomic diffusion. Yet, the effect of atomic diffusion, including radiative levitation, has hardly been studied in the context of gravity mode pulsations of core-hydrogen burning stars. In this paper, we study the difference in the properties of such modes for models with and without atomic diffusion. We perform asteroseismic modeling of two slowly rotating A- and F-type pulsators, KIC11145123 ($f_{rm rot} approx0.010~{rm d}^{-1}$) and KIC9751996 ($f_{rm rot} approx0.0696~{rm d}^{-1}$), respectively, based on the periods of individual gravity modes. For both stars, we find models whose g-mode periods are in very good agreement with the {it Kepler/} asteroseismic data, keeping in mind that the theoretical/numerical precision of present-day stellar evolution models is typically about two orders of magnitude lower than the measurement errors. Using the Akaike Information Criterion (AIC) we have made a comparison between our best models with and without diffusion, and found very strong evidence for signatures of atomic diffusion in the pulsations of KIC11145123. In the case of KIC9751996 the models with atomic diffusion are not able to explain the data as well as the models without it. Furthermore, we compare the observed surface abundances with those predicted by the best fitting models. The observed abundances are inconclusive for KIC9751996, while those of KIC11145123 from the literature can better be explained by a model with atomic diffusion.
Convective boundary mixing (CBM) is ubiquitous in stellar evolution. It is a necessary ingredient in the models in order to match observational constraints from clusters, binaries and single stars alike. We compute `effective overshoot measures that reflect the extent of mixing and which can differ significantly from the input overshoot values set in the stellar evolution codes. We use constraints from pressure modes to infer the CBM properties of Kepler and CoRoT main-sequence and subgiant oscillators, as well as in two radial velocity targets (Procyon A and $alpha$ Cen A). Collectively these targets allow us to identify how measurement precision, stellar spectral type, and overshoot implementation impact the asteroseismic solution. With these new measures we find that the `effective overshoot for most stars is in line with physical expectations and calibrations from binaries and clusters. However, two F-stars in the CoRoT field (HD 49933 and HD 181906) still necessitate high overshoot in the models. Due to short mode lifetimes, mode identification can be difficult in these stars. We demonstrate that an incongruence between the radial and non-radial modes drives the asteroseismic solution to extreme structures with highly-efficient CBM as an inevitable outcome. Understanding the cause of seemingly anomalous physics for such stars is vital for inferring accurate stellar parameters from TESS data with comparable timeseries length.