Do you want to publish a course? Click here

On the relative bias of void tracers in the Dark Energy Survey

63   0   0.0 ( 0 )
 Added by Giorgia Pollina
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Luminous tracers of large-scale structure are not entirely representative of the distribution of mass in our Universe. As they arise from the highest peaks in the matter density field, the spatial distribution of luminous objects is biased towards those peaks. On large scales, where density fluctuations are mild, this bias simply amounts to a constant offset in the clustering amplitude of the tracer, known as linear bias. In this work we focus on the relative bias between galaxies and galaxy clusters that are located inside and in the vicinity of cosmic voids, extended regions of relatively low density in the large-scale structure of the Universe. With the help of hydro-dynamical simulations we verify that the relation between galaxy and cluster overdensity around voids remains linear. Hence, the void-centric density profiles of different tracers can be linked by a single multiplicative constant. This amounts to the same value as the relative linear bias between tracers for the largest voids in the sample. For voids of small sizes, which typically arise in higher density regions, this constant has a higher value, possibly showing an environmental dependence similar to that observed for the linear bias itself. We confirm our findings by analysing mocks and data obtained during the first year of observations by the Dark Energy Survey. As a side product, we present the first catalogue of three-dimensional voids extracted from a photometric survey with a controlled photo-z uncertainty. Our results will be relevant in forthcoming analyses that attempt to use voids as cosmological probes.



rate research

Read More

Galaxies and their dark matter halos populate a complicated filamentary network around large, nearly empty regions known as cosmic voids. Cosmic voids are usually identified in spectroscopic galaxy surveys, where 3D information about the large-scale structure of the Universe is available. Although an increasing amount of photometric data is being produced, its potential for void studies is limited since photometric redshifts induce line-of-sight position errors of $sim50$ Mpc/$h$ or more that can render many voids undetectable. In this paper we present a new void finder designed for photometric surveys, validate it using simulations, and apply it to the high-quality photo-$z$ redMaGiC galaxy sample of the Dark Energy Survey Science Verification (DES-SV) data. The algorithm works by projecting galaxies into 2D slices and finding voids in the smoothed 2D galaxy density field of the slice. Fixing the line-of-sight size of the slices to be at least twice the photo-$z$ scatter, the number of voids found in these projected slices of simulated spectroscopic and photometric galaxy catalogs is within 20% for all transverse void sizes, and indistinguishable for the largest voids of radius $sim 70$ Mpc/$h$ and larger. The positions, radii, and projected galaxy profiles of photometric voids also accurately match the spectroscopic void sample. Applying the algorithm to the DES-SV data in the redshift range $0.2<z<0.8$, we identify 87 voids with comoving radii spanning the range 18-120 Mpc/$h$, and carry out a stacked weak lensing measurement. With a significance of $4.4sigma$, the lensing measurement confirms the voids are truly underdense in the matter field and hence not a product of Poisson noise, tracer density effects or systematics in the data. It also demonstrates, for the first time in real data, the viability of void lensing studies in photometric surveys.
The evolution of the linear and scale independent bias, based on the most popular dark matter bias models within the $Lambda$CDM cosmology, is confronted to that of the Dark Energy Survey (DES) Luminous Red Galaxies (LRGs). Applying a $chi^2$ minimization procedure between models and data we find that all the considered linear bias models reproduce well the LRG bias data. The differences among the bias models are absorbed in the predicted mass of the dark-matter halo in which LRGs live and which ranges between $sim 6 times 10^{12} h^{-1} M_{odot}$ and $1.4 times 10^{13} h^{-1} M_{odot}$, for the different bias models. Similar results, reaching however a maximum value of $sim 2times 10^{13} h^{-1} M_{odot}$, are found by confronting the SDSS (2SLAQ) Large Red Galaxies clustering with theoretical clustering models, which also include the evolution of bias. This later analysis also provides a value of $Omega_{m}=0.30pm 0.01$, which is in excellent agreement with recent joint analyses of different cosmological probes and the reanalysis of the Planck data.
We present a comparison between approximated methods for the construction of mock catalogs based on the halo-bias mapping technique. To this end, we use as reference a high resolution $N$-body simulation of 3840$^3$ dark matter particles on a 400$h^{-1}rm{Mpc}$ cube box from the Multidark suite. In particular, we explore parametric versus non-parametric bias mapping approaches and compare them at reproducing the halo distribution in terms of the two and three point statistics down to $sim 10^8,{rm M}_{odot},h^{-1}$ halo masses. Our findings demonstrate that the parametric approach remains inaccurate even including complex deterministic and stochastic components. On the contrary, the non-parametric one is indistinguishable from the reference $N$-body calculation in the power-spectrum beyond $k=1,h,{rm Mpc}^{-1}$, and in the bispectrum for typical configurations relevant to baryon acoustic oscillation analysis. We conclude, that approaches which extract the full bias information from $N$-body simulations in a non-parametric fashion are ready for the analysis of the new generation of large scale structure surveys.
The Void Galaxy Survey (VGS) is a multi-wavelength program to study $sim$60 void galaxies. Each has been selected from the deepest interior regions of identified voids in the SDSS redshift survey on the basis of a unique geometric technique, with no a prior selection of intrinsic properties of the void galaxies. The project intends to study in detail the gas content, star formation history and stellar content, as well as kinematics and dynamics of void galaxies and their companions in a broad sample of void environments. It involves the HI imaging of the gas distribution in each of the VGS galaxies. Amongst its most tantalizing findings is the possible evidence for cold gas accretion in some of the most interesting objects, amongst which are a polar ring galaxy and a filamentary configuration of void galaxies. Here we shortly describe the scope of the VGS and the results of the full analysis of the pilot sample of 15 void galaxies.
Voids have emerged as a novel probe of cosmology and large-scale structure. These regions of extreme underdensity are sensitive to physics beyond the standard model of cosmology, and can potentially be used as a testing ground to constrain new physics. We present the first determination of the linear void bias measured in separate universe simulations. Our methods are validated by comparing the separate universe response bias with the clustering bias of voids. We find excellent agreement between the two methods for voids identified in the halo field and the down-sampled dark matter field. For voids traced by halos, we identify two different contributions to the bias. The first is due to the bias of the underlying halo field used to identify voids, while the second we attribute to the dynamical impact of long-wavelength density perturbations on void formation and expansion. By measuring these contributions individually, we demonstrate that their sum is consistent with the total void bias. We also measure the void profiles in our simulations, and determine their separate universe response. These can be interpreted as the sensitivity of the profiles to the background density of the Universe.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا