Do you want to publish a course? Click here

Deciphering the activity and quiescence of high-redshift cluster environments: ALMA observations of ClJ1449+0856 at z=2

124   0   0.0 ( 0 )
 Added by Veronica Strazzullo
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present ALMA observations of the 870$mu$m continuum and CO(4-3) line emission in the core of the galaxy cluster ClJ1449+0856 at z=2, a NIR-selected, X-ray detected system in the mass range of typical progenitors of todays massive clusters. The 870$mu$m map reveals six F$_{870mu m}$ > 0.5 mJy sources spread over an area of 0.07 arcmin$^2$, giving an overdensity of a factor ~10 (6) with respect to blank field counts down to F$_{870mu m}$ > 1 (0.5) mJy. On the other hand, deep CO(4-3) follow-up confirms membership of three of these sources, but suggests that the remaining three, including the brightest 870$mu$m sources in the field (F$_{870mu m}gtrsim$2 mJy), are likely interlopers. The measurement of 870$mu$m continuum and CO(4-3) line fluxes at the positions of previously-known cluster members provides a deep probe of dusty star formation occurring in the core of this high-redshift structure, adding up to a total SFR~700$pm$100 M$_{odot}$/yr and yielding an integrated star formation rate density of ~10$^4$ M$_{odot}$/yr/Mpc$^3$, five orders of magnitude larger than in the field at the same epoch, due to the concentration of star-forming galaxies in the small volume of the dense cluster core. The combination of these observations with previously available HST imaging highlights the presence in this same volume of a population of galaxies with already suppressed star formation. This diverse composition of galaxy populations in ClJ1449+0856 is especially highlighted at the very cluster center, where a complex assembly of quiescent and star-forming sources is likely forming the future Brightest Cluster Galaxy.



rate research

Read More

We use HST/WFC3 imaging to study the red population in the IR-selected, X-ray detected, low-mass cluster Cl J1449+0856 at z=2, one of the few bona-fide established clusters discovered at this redshift, and likely a typical progenitor of an average massive cluster today. This study explores the presence and significance of an early red sequence in the core of this structure, investigating the nature of red sequence galaxies, highlighting environmental effects on cluster galaxy populations at high redshift, and at the same time underlining similarities and differences with other distant dense environments. Our results suggest that the red population in the core of Cl J1449+0856 is made of a mixture of quiescent and dusty star-forming galaxies, with a seedling of the future red sequence already growing in the very central cluster region, and already characterising the inner cluster core with respect to lower density environments. On the other hand, the color-magnitude diagram of this cluster is definitely different from that of lower-redshift (z<1) clusters, as well as of some rare particularly evolved massive clusters at similar redshift, and it is suggestive of a transition phase between active star formation and passive evolution occurring in the proto-cluster and established lower-redshift cluster regimes.
We present SCUBA-2 450$mu$m and 850$mu$m data of the mature redshift 2 cluster CLJ1449. We combine this with archival Herschel data to explore the star forming properties of CLJ1449. Using high resolution ALMA and JVLA data we identify potentially confused galaxies, and use the Bayesian inference tool XID+ to estimate fluxes for them. Using archival optical and near infrared data with the energy-balance code CIGALE we calculate star formation rates, and stellar masses for all our cluster members, and find the star formation rate varies between 20-1600M$_{odot}$yr$^{-1}$ over the entire 3Mpc radial range. The central 0.5Mpc region itself has a total star formation rate of 800$pm$200M$_{odot}$yr$^{-1}$, which corresponds to a star formation rate density of (1.2$pm$0.3)$times$10$^{4}$M$_{odot}$yr$^{-1}$Mpc$^{-3}$, which is approximately five orders of magnitude greater than expected field values. When comparing this cluster to those at lower redshifts we find that there is an increase in star formation rate per unit volume towards the centre of the cluster. This indicates that there is indeed a reversal in the star formation/density relation in CLJ1449. Based on the radial star-formation rate density profile, we see evidence for an elevation in the star formation rate density, even out to radii of 3Mpc. At these radii the elevation could be an order of magnitude greater than field values, but the exact number cannot be determined due to ambiguity in the redshift associations. If this is the case it would imply that this cluster is still accreting material which is possibly interacting and undergoing vigorous star-formation.
238 - N. Scoville , H. Aussel , K. Sheth 2014
The use of submm dust continuum emission to probe the mass of interstellar dust and gas in galaxies is empirically calibrated using samples of local star forming galaxies, Planck observations of the Milky Way and high redshift submm galaxies (SMGs). All of these objects suggest a similar calibration, strongly supporting the view that the Rayleigh-Jeans (RJ) tail of the dust emission can be used as an accurate and very fast probe of the ISM in galaxies. We present ALMA Cycle 0 observations of the Band 7 (350 GHz) dust emission in 107 galaxies from z = 0.2 to 2.5. Three samples of galaxies with a total of 101 galaxies were stellar mass-selected from COSMOS to have $M_* simeq10^{11}$msun: 37 at z$sim0.4$, 33 at z$sim0.9$ and 31 at z$=2$. A fourth sample with 6 IR luminous galaxies at z = 2 was observed for comparison with the purely mass-selected samples. From the fluxes detected in the stacked images for each sample, we find that the ISM content has decreased a factor $sim 6$ from $1 - 2 times 10^{10}$msun at both z = 2 and 0.9 down to $sim 2 times 10^9$msun at z = 0.4. The IR luminous sample at z = 2 shows a further $sim 4$ times increase in M$_{ISM}$ compared to the equivalent non-IR bright sample at the same redshift. The gas mass fractions are $sim 2pm0.5, 12pm3, 14pm2 ~rm{and} ~53pm3$ $%$ for the four subsamples (z = 0.4, 0.9, 2 and IR bright galaxies).
159 - Masami Ouchi 2020
In this series of lectures, I review our observational understanding of high-$z$ Ly$alpha$ emitters (LAEs) and relevant scientific topics. Since the discovery of LAEs in the late 1990s, more than ten (one) thousand(s) of LAEs have been identified photometrically (spectroscopically) at $zsim 0$ to $zsim 10$. These large samples of LAEs are useful to address two major astrophysical issues, galaxy formation and cosmic reionization. Statistical studies have revealed the general picture of LAEs physical properties: young stellar populations, remarkable luminosity function evolutions, compact morphologies, highly ionized inter-stellar media (ISM) with low metal/dust contents, low masses of dark-matter halos. Typical LAEs represent low-mass high-$z$ galaxies, high-$z$ analogs of dwarf galaxies, some of which are thought to be candidates of population III galaxies. These observational studies have also pinpointed rare bright Ly$alpha$ sources extended over $sim 10-100$ kpc, dubbed Ly$alpha$ blobs, whose physical origins are under debate. LAEs are used as probes of cosmic reionization history through the Ly$alpha$ damping wing absorption given by the neutral hydrogen of the inter-galactic medium (IGM), which complement the cosmic microwave background radiation and 21cm observations. The low-mass and highly-ionized population of LAEs can be major sources of cosmic reionization. The budget of ionizing photons for cosmic reionization has been constrained, although there remain large observational uncertainties in the parameters. Beyond galaxy formation and cosmic reionization, several new usages of LAEs for science frontiers have been suggested such as the distribution of {sc Hi} gas in the circum-galactic medium and filaments of large-scale structures. On-going programs and future telescope projects, such as JWST, ELTs, and SKA, will push the horizons of the science frontiers.
We present ALMA CO (2-1) detections in 11 gas-rich cluster galaxies at z~1.6, constituting the largest sample of molecular gas measurements in z>1.5 clusters to date. The observations span three galaxy clusters, derived from the Spitzer Adaptation of the Red-sequence Cluster Survey. We augment the >5sigma detections of the CO (2-1) fluxes with multi-band photometry, yielding stellar masses and infrared-derived star formation rates, to place some of the first constraints on molecular gas properties in z~1.6 cluster environments. We measure sizable gas reservoirs of 0.5-2x10^11 solar masses in these objects, with high gas fractions and long depletion timescales, averaging 62% and 1.4 Gyr, respectively. We compare our cluster galaxies to the scaling relations of the coeval field, in the context of how gas fractions and depletion timescales vary with respect to the star-forming main sequence. We find that our cluster galaxies lie systematically off the field scaling relations at z=1.6 toward enhanced gas fractions, at a level of ~4sigma, but have consistent depletion timescales. Exploiting CO detections in lower-redshift clusters from the literature, we investigate the evolution of the gas fraction in cluster galaxies, finding it to mimic the strong rise with redshift in the field. We emphasize the utility of detecting abundant gas-rich galaxies in high-redshift clusters, deeming them as crucial laboratories for future statistical studies.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا