Do you want to publish a course? Click here

Mixing and perfect sampling in one-dimensional particle systems

125   0   0.0 ( 0 )
 Added by Werner Krauth
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the approach to equilibrium of the event-chain Monte Carlo (ECMC) algorithm for the one-dimensional hard-sphere model. Using the connection to the coupon-collector problem, we prove that a specific version of this local irreversible Markov chain realizes perfect sampling in O(N^2 log N) events, whereas the reversible local Metropolis algorithm requires O(N^3 log N) time steps for mixing. This confirms a special case of an earlier conjecture about O(N^2 log N) scaling of mixing times of ECMC and of the forward Metropolis algorithm, its discretized variant. We furthermore prove that sequential ECMC (with swaps) realizes perfect sampling in O(N^2) events. Numerical simulations indicate a cross-over towards O(N^2 log N) mixing for the sequential forward swap Metropolis algorithm, that we introduce here. We point out open mathematical questions and possible applications of our findings to higher-dimensional statistical-physics models.



rate research

Read More

We study the phenomenon of jamming in driven diffusive systems. We introduce a simple microscopic model in which jamming of a conserved driven species is mediated by the presence of a non-conserved quantity, causing an effective long range interaction of the driven species. We study the model analytically and numerically, providing strong evidence that jamming occurs; however, this proceeds via a strict phase transition (with spontaneous symmetry breaking) only in a prescribed limit. Outside this limit, the nearby transition (characterised by an essential singularity) induces sharp crossovers and transient coarsening phenomena. We discuss the relevance of the model to two physical situations: the clustering of buses, and the clogging of a suspension forced along a pipe.
149 - Spyros Sotiriadis 2016
We study quench dynamics and equilibration in one-dimensional quantum hydrodynamics, which provides effective descriptions of the density and velocity fields in gapless quantum gases. We show that the information content of the large time steady state is inherently connected to the presence of ballistically moving localised excitations. When such excitations are present, the system retains memory of initial correlations up to infinite times, thus evading decoherence. We demonstrate this connection in the context of the Luttinger model, the simplest quantum hydrodynamic model, and in the quantum KdV equation. In the standard Luttinger model, memory of all initial correlations is preserved throughout the time evolution up to infinitely large times, as a result of the purely ballistic dynamics. However nonlinear dispersion or interactions, when separately present, lead to spreading and delocalisation that suppress the above effect by eliminating the memory of non-Gaussian correlations. We show that, for any initial state that satisfies sufficient clustering of correlations, the steady state is Gaussian in terms of the bosonised or fermionised fields in the dispersive or interacting case respectively. On the other hand, when dispersion and interaction are simultaneously present, a semiclassical approximation suggests that localisation is restored as the two effects compensate each other and solitary waves are formed. Solitary waves, or simply solitons, are experimentally observed in quantum gases and theoretically predicted based on semiclassical approaches, but the question of their stability at the quantum level remains to a large extent an open problem. We give a general overview on the subject and discuss the relevance of our findings to general out of equilibrium problems.
We exploit mappings between quantum and classical systems in order to obtain a class of two-dimensional classical systems with critical properties equivalent to those of the class of one-dimensional quantum systems discussed in a companion paper (J. Hutchinson, J. P. Keating, and F. Mezzadri, arXiv:1503.05732). In particular, we use three approaches: the Trotter-Suzuki mapping; the method of coherent states; and a calculation based on commuting the quantum Hamiltonian with the transfer matrix of a classical system. This enables us to establish universality of certain critical phenomena by extension from the results in our previous article for the classical systems identified.
Systems of particles interacting via inverse-power law potentials have an invariance with respect to changes in length and temperature, implying a correspondence in the dynamics and thermodynamics between different `isomorphic sets of temperatures and densities. In a recent series of works, it has been argued that such correspondences hold to a surprisingly good approximation in a much more general class of potentials, an observation that summarizes many properties that have been observed in the past. In this paper we show that such relations are exact in high-dimensional liquids and glasses, a limit in which the conditions for these mappings to hold become transparent. The special role played by the exponential potential is also confirmed.
We study the out-of-equilibrium dynamics of one-dimensional quantum Ising-like systems, arising from sudden quenches of the Hamiltonian parameter $g$ driving quantum transitions between disordered and ordered phases. In particular, we consider quenches to values of $g$ around the critical value $g_c$, and mainly address the question whether, and how, the quantum transition leaves traces in the evolution of the transverse and longitudinal magnetizations during such a deep out-of-equilibrium dynamics. We shed light on the emergence of singularities in the thermodynamic infinite-size limit, likely related to the integrability of the model. Finite systems in periodic and open boundary conditions develop peculiar power-law finite-size scaling laws related to revival phenomena, but apparently unrelated to the quantum transition, because their main features are generally observed in quenches to generic values of $g$. We also investigate the effects of dissipative interactions with an environment, modeled by a Lindblad equation with local decay and pumping dissipation operators within the quadratic fermionic model obtainable by a Jordan-Wigner mapping. Dissipation tends to suppress the main features of the unitary dynamics of closed systems. We finally address the effects of integrability breaking, due to further lattice interactions, such as in anisotropic next-to-nearest neighbor Ising (ANNNI) models. We show that some qualitative features of the post-quench dynamics persist, in particular the different behaviors when quenching to quantum ferromagnetic and paramagnetic phases, and the revival phenomena due to the finite size of the system.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا