Do you want to publish a course? Click here

Chemical abundances of neutron capture elements in exoplanet-hosting stars

138   0   0.0 ( 0 )
 Added by Elisa Delgado Mena
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

To understand the formation and composition of planetary systems it is important to study their host stars composition since both are formed in the same stellar nebula. In this work we analyze the behaviour of chemical abundances of Cu, Zn, Sr, Y, Zr, Ba, Ce, Nd and Eu in the large and homogeneous HARPS-GTO planet search sample ($R sim$ 115000). This sample is composed of 120 stars hosting high-mass planets, 29 stars hosting exclusively Neptunians and Super-Earths and 910 stars without detected giant planets. We compare the [X/Fe] ratios of such elements in different metallicity bins and we find that planet hosts present higher abundances of Zn for [Fe/H]$<$--0.1 dex. On the other hand, Ba, Sr, Ce and Zr abundances are underabundant in stars with planets, with a bigger difference for stars only hosting low-mass planets. However, most of the offsets found can be explained by differences in stellar parameters and by the fact that planet hosts at low metallicity mostly belong to the Galactic thick disk. Only in the case of Ba we find a statistically significant (3$sigma$) underabundance of 0.03 dex for low-mass planet hosts. The origin of these elements is quite complex due to their evolution during the history of the Galaxy. Therefore, it is necessary to understand and characterize the stellar populations to which planet hosts belong in order to do a fair comparison with stars without detected planets. This work demonstrates that the effects of Galactic chemical evolution and not the presence of planets mostly account for the differences we find.



rate research

Read More

High resolution spectra obtained from the Subaru Telescope High Dispersion Spectrograph have been used to update the stellar atmospheric parameters and metallicity of the star HD 209621. We have derived a metallicity of [Fe/H] = -1.93 for this star, and have found a large enhancement of carbon and of heavy elements, with respect to iron. Updates on the elemental abundances of four s-process elements (Y, Ce, Pr, Nd) along with the first estimates of abundances for a number of other heavy elements (Sr, Zr, Ba, La, Sm, Eu, Er, Pb) are reported. The stellar atmospheric parameters, the effective temperature, Teff, and the surface gravity, log g (4500 K, 2.0), are determined from LTE analysis using model atmospheres. Estimated [Ba/Eu] = +0.35, places the star in the group of CEMP-(r+s) stars; however, the s-elements abundance pattern seen in HD 209621 is characteristic of CH stars; notably, the 2nd-peak s-process elements are more enhanced than the first peak s-process elements. HD 209621 is also found to show a large enhancement of the 3rd-peak s-process element lead (Pb) with [Pb/Fe] = +1.88. The relative contributions of the two neutron-capture processes, r- and s- to the observed abundances are examined using a parametric model based analysis, that hints that the neutron-capture elements in HD 209621 primarily originate in s-process.
It is well-known that stars with giant planets are on average more metal-rich than stars without giant planets, whereas stars with detected low-mass planets do not need to be metal-rich. With the aim of studying the weak boundary that separates giant planets and brown dwarfs (BDs) and their formation mechanism, we analyze the spectra of a sample of stars with already confirmed BD companions both by radial velocity and astrometry. We employ standard and automatic tools to perform an EW-based analysis and to derive chemical abundances from CORALIE spectra of stars with BD companions. We compare these abundances with those of stars without detected planets and with low-mass and giant-mass planets. We find that stars with BDs do not have metallicities and chemical abundances similar to those of giant-planet hosts but they resemble the composition of stars with low-mass planets. The distribution of mean abundances of $alpha$-elements and iron peak elements of stars with BDs exhibit a peak at about solar abundance whereas for stars with low-mass and high-mass planets the [X$_alpha$/H] and [X$_{rm Fe}$/H] peak abundances remain at $sim -0.1$~dex and $sim +0.15$~dex, respectively. We display these element abundances for stars with low-mass and high-mass planets, and BDs versus the minimum mass, $m_C sin i$, of the most-massive substellar companion in each system, and we find a maximum in $alpha$-element as well as Fe-peak abundances at $m_C sin i sim 1.35pm 0.20$ jupiter masses. We discuss the implication of these results in the context of the formation scenario of BDs in comparison with that of giant planets.
We present high-resolution of spectroscopy of four stars in two candidate ultra-faint dwarf galaxies (UFDs) Grus I (Gru I) and Triangulum II (Tri II). Neither object currently has a clearly determined velocity dispersion, placing them in an ambiguous region of parameter space between dwarf galaxies and globular clusters. No significant metallicity difference is found for the two Gru I stars, but both stars are deficient in neutron-capture elements. We verify previous results that Tri II displays significant spreads in metallicity and [$alpha$/Fe]. Neutron-capture elements are not detected in our Tri II data, but we place upper limits at the lower envelope of Galactic halo stars, consistent with previous very low detections. Stars with similarly low neutron-capture element abundances are common in UFDs, but rare in other environments. This signature of low neutron-capture element abundances traces chemical enrichment in the least massive star-forming dark matter halos, and further shows that the dominant sources of neutron-capture elements in metal-poor stars are rare. In contrast, all known globular clusters have similar ratios of neutron-capture elements to those of halo stars, suggesting that globular clusters form as part of relatively massive galaxies rather than in their own dark matter halos. The low neutron-capture element abundances may be the strongest evidence that Gru I and Tri II are (or once were) galaxies rather than globular clusters, and we expect future observations of these systems to robustly find non-zero velocity dispersions or signs of tidal disruption. However, the nucleosynthetic origin of this low neutron-capture element floor remains unknown.
64 - Adam M. Ritchey 2018
We present an extensive analysis of the gas-phase abundances and depletion behaviors of neutron-capture elements in the interstellar medium (ISM). Column densities (or upper limits to the column densities) of Ga II, Ge II, As II, Kr I, Cd II, Sn II, and Pb II are determined for a sample of 69 sight lines with high- and/or medium-resolution archival spectra obtained with the Space Telescope Imaging Spectrograph onboard the Hubble Space Telescope. An additional 59 sight lines with column density measurements reported in the literature are included in our analysis. Parameters that characterize the depletion trends of the elements are derived according to the methodology developed by Jenkins (2009; arXiv:0905.3173). (In an appendix, we present similar depletion results for the light element B.) The depletion patterns exhibited by Ga and Ge comport with expectations based on the depletion results obtained for many other elements. Arsenic exhibits much less depletion than expected, and its abundance in low-depletion sight lines may even be supersolar. We confirm a previous finding by Jenkins (2009; arXiv:0905.3173) that the depletion of Kr increases as the overall depletion level increases from one sight line to another. Cadmium shows no such evidence of increasing depletion. We find a significant amount of scatter in the gas-phase abundances of Sn and Pb. For Sn, at least, the scatter may be evidence of real intrinsic abundance variations due to s-process enrichment combined with inefficient mixing in the ISM.
We report the first detailed chemical abundance analysis of the exoplanet-hosting M-dwarf stars Kepler-138 and Kepler-186 from the analysis of high-resolution ($R$ $sim$ 22,500) $H$-band spectra from the SDSS IV - APOGEE survey. Chemical abundances of thirteen elements - C, O, Na, Mg, Al, Si, K, Ca, Ti, V, Cr, Mn, and Fe - are extracted from the APOGEE spectra of these early M-dwarfs via spectrum syntheses computed with an improved line list that takes into account H$_{2}$O and FeH lines. This paper demonstrates that APOGEE spectra can be analyzed to determine detailed chemical compositions of M-dwarfs. Both exoplanet-hosting M-dwarfs display modest sub-solar metallicities: [Fe/H]$_{Kepler-138}$ = -0.09 $pm$ 0.09 dex and [Fe/H]$_{Kepler-186}$ = -0.08 $pm$ 0.10 dex. The measured metallicities resulting from this high-resolution analysis are found to be higher by $sim$0.1-0.2 dex than previous estimates from lower-resolution spectra. The C/O ratios obtained for the two planet-hosting stars are near-solar, with values of 0.55 $pm$ 0.10 for Kepler-138 and 0.52 $pm$ 0.12 for Kepler-186. Kepler-186 exhibits a marginally enhanced [Si/Fe] ratio.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا