No Arabic abstract
We study robust distributed learning that involves minimizing a non-convex loss function with saddle points. We consider the Byzantine setting where some worker machines have abnormal or even arbitrary and adversarial behavior. In this setting, the Byzantine machines may create fake local minima near a saddle point that is far away from any true local minimum, even when robust gradient estimators are used. We develop ByzantinePGD, a robust first-order algorithm that can provably escape saddle points and fake local minima, and converge to an approximate true local minimizer with low iteration complexity. As a by-product, we give a simpler algorithm and analysis for escaping saddle points in the usual non-Byzantine setting. We further discuss three robust gradient estimators that can be used in ByzantinePGD, including median, trimmed mean, and iterative filtering. We characterize their performance in concrete statistical settings, and argue for their near-optimality in low and high dimensional regimes.
Recently researchers have studied input leakage problems in Federated Learning (FL) where a malicious party can reconstruct sensitive training inputs provided by users from shared gradient. It raises concerns about FL since input leakage contradicts the privacy-preserving intention of using FL. Despite a relatively rich literature on attacks and defenses of input reconstruction in Horizontal FL, input leakage and protection in vertical FL starts to draw researchers attention recently. In this paper, we study how to defend against input leakage attacks in Vertical FL. We design an adversarial training-based framework that contains three modules: adversarial reconstruction, noise regularization, and distance correlation minimization. Those modules can not only be employed individually but also applied together since they are independent to each other. Through extensive experiments on a large-scale industrial online advertising dataset, we show our framework is effective in protecting input privacy while retaining the model utility.
Gradient-based training in federated learning is known to be vulnerable to faulty/malicious worker nodes, which are often modeled as Byzantine clients. Previous work either makes use of auxiliary data at parameter server to verify the received gradients or leverages statistic-based methods to identify and remove malicious gradients from Byzantine clients. In this paper, we acknowledge that auxiliary data may not always be available in practice and focus on the statistic-based approach. However, recent work on model poisoning attacks have shown that well-crafted attacks can circumvent most of existing median- and distance-based statistical defense methods, making malicious gradients indistinguishable from honest ones. To tackle this challenge, we show that the element-wise sign of gradient vector can provide valuable insight in detecting model poisoning attacks. Based on our theoretical analysis of state-of-the-art attack, we propose a novel approach, textit{SignGuard}, to enable Byzantine-robust federated learning through collaborative malicious gradient filtering. More precisely, the received gradients are first processed to generate relevant magnitude, sign, and similarity statistics, which are then collaboratively utilized by multiple, parallel filters to eliminate malicious gradients before final aggregation. We further provide theoretical analysis of SignGuard by quantifying its convergence with appropriate choice of learning rate and under non-IID training data. Finally, extensive experiments of image and text classification tasks - including MNIST, Fashion-MNIST, CIFAR-10, and AG-News - are conducted together with recently proposed attacks and defense strategies. The numerical results demonstrate the effectiveness and superiority of our proposed approach.
Federated Learning (FL) is a distributed machine learning paradigm where data is distributed among clients who collaboratively train a model in a computation process coordinated by a central server. By assigning a weight to each client based on the proportion of data instances it possesses, the rate of convergence to an accurate joint model can be greatly accelerated. Some previous works studied FL in a Byzantine setting, in which a fraction of the clients may send arbitrary or even malicious information regarding their model. However, these works either ignore the issue of data unbalancedness altogether or assume that client weights are apriori known to the server, whereas, in practice, it is likely that weights will be reported to the server by the clients themselves and therefore cannot be relied upon. We address this issue for the first time by proposing a practical weight-truncation-based preprocessing method and demonstrating empirically that it is able to strike a good balance between model quality and Byzantine robustness. We also establish analytically that our method can be applied to a randomly selected sample of client weights.
The vulnerability of machine learning systems to adversarial attacks questions their usage in many applications. In this paper, we propose a randomized diversification as a defense strategy. We introduce a multi-channel architecture in a gray-box scenario, which assumes that the architecture of the classifier and the training data set are known to the attacker. The attacker does not only have access to a secret key and to the internal states of the system at the test time. The defender processes an input in multiple channels. Each channel introduces its own randomization in a special transform domain based on a secret key shared between the training and testing stages. Such a transform based randomization with a shared key preserves the gradients in key-defined sub-spaces for the defender but it prevents gradient back propagation and the creation of various bypass systems for the attacker. An additional benefit of multi-channel randomization is the aggregation that fuses soft-outputs from all channels, thus increasing the reliability of the final score. The sharing of a secret key creates an information advantage to the defender. Experimental evaluation demonstrates an increased robustness of the proposed method to a number of known state-of-the-art attacks.
We consider the critical problem of distributed learning over data while keeping it private from the computational servers. The state-of-the-art approaches to this problem rely on quantizing the data into a finite field, so that the cryptographic approaches for secure multiparty computing can then be employed. These approaches, however, can result in substantial accuracy losses due to fixed-point representation of the data and computation overflows. To address these critical issues, we propose a novel algorithm to solve the problem when data is in the analog domain, e.g., the field of real/complex numbers. We characterize the privacy of the data from both information-theoretic and cryptographic perspectives, while establishing a connection between the two notions in the analog domain. More specifically, the well-known connection between the distinguishing security (DS) and the mutual information security (MIS) metrics is extended from the discrete domain to the continues domain. This is then utilized to bound the amount of information about the data leaked to the servers in our protocol, in terms of the DS metric, using well-known results on the capacity of single-input multiple-output (SIMO) channel with correlated noise. It is shown how the proposed framework can be adopted to do computation tasks when data is represented using floating-point numbers. We then show that this leads to a fundamental trade-off between the privacy level of data and accuracy of the result. As an application, we also show how to train a machine learning model while keeping the data as well as the trained model private. Then numerical results are shown for experiments on the MNIST dataset. Furthermore, experimental advantages are shown comparing to fixed-point implementations over finite fields.