No Arabic abstract
A new scheme that tightly couples kinetic turbulence codes across a spatial interface is introduced. This scheme evolves from considerations of competing strategies and down-selection. It is found that the use of a composite kinetic distribution function and fields with global boundary conditions as if the coupled code were one, makes the coupling problem tractable. In contrast, coupling the two solutions from each code across the overlap region is found to be more difficult due to numerical dephasing of the turbulent solutions between two solvers. Another advantage of the new scheme is that the data movement can be limited to the 3D fluid quantities, instead of higher dimensional kinetic information, which is computationally more efficient for large scale simulations on leadership class computers.
Direct coupling between a transport solver and local, nonlinear gyrokinetic calculations using the multiscale gyrokinetic code TRINITY [M. Barnes, Ph.D. thesis, arxiv:0901.2868] is described. The coupling of the microscopic and macroscopic physics is done within the framework of multiscale gyrokinetic theory, of which we present the assumptions and key results. An assumption of scale separation in space and time allows for the simulation of turbulence in small regions of the space-time grid, which are embedded in a coarse grid on which the transport equations are implicitly evolved. This leads to a reduction in computational expense of several orders of magnitude, making first-principles simulations of the full fusion device volume over the confinement time feasible on current computing resources. Numerical results from TRINITY simulations are presented and compared with experimental data from JET and ASDEX Upgrade plasmas.
This paper describes a conceptual framework for understanding kinetic plasma turbulence as a generalized form of energy cascade in phase space. It is emphasized that conversion of turbulent energy into thermodynamic heat is only achievable in the presence of some (however small) degree of collisionality. The smallness of the collision rate is compensated by the emergence of small-scale structure in the velocity space. For gyrokinetic turbulence, a nonlinear perpendicular phase mixing mechanism is identified and described as a turbulent cascade of entropy fluctuations simultaneously occurring at spatial scales smaller than the ion gyroscale and in velocity space. Scaling relations for the resulting fluctuation spectra are derived. An estimate for the collisional cutoff is provided. The importance of adequately modeling and resolving collisions in gyrokinetic simulations is biefly discussed, as well as the relevance of these results to understanding the dissipation-range turbulence in the solar wind and the electrostatic microturbulence in fusion plasmas.
We are developing a new continuum gyrokinetic code, Gkeyll, for use in edge plasma simulations, and here present initial simulations of turbulence on open field lines with model sheath boundary conditions. The code implements an energy conserving discontinuous Galerkin scheme, applicable to a general class of Hamiltonian equations. Several applications to test problems have been done, including a calculation of the parallel heat-flux on divertor plates resulting from an ELM crash in JET, for a 1x/1v SOL scenario explored previously, where the ELM is modeled as a time-dependent intense upstream source. Here we present initial simulations of turbulence on open field lines in the LAPD linear plasma device. We have also done simulations in a helical open-field-line geometry. While various simplifications have been made at present, this still includes some of the key physics of SOL turbulence, such as bad-curvature drive for instabilities and rapid parallel losses with sheath boundary conditions. This is useful for demonstrating the overall feasibility of this approach and for initial physics studies of SOL turbulence. We developed a novel version of DG that uses Maxwellian-weighted basis functions while still preserving exact particle and energy conservation. The Maxwellian-weighted DG method achieves the same error with 4 times less computational cost in 1v, or 16 times lower cost in the 2 velocity dimensions of gyrokinetics (assuming memory bandwidth is the limiting factor).
3D2V continuum gyrokinetic simulations of electrostatic plasma turbulence in a straight, open-field-line geometry have been performed using the full-$f$ discontinuous-Galerkin code Gkeyll. These simulations include the basic elements of a fusion-device scrape-off layer: localized sources to model plasma outflow from the core, cross-field turbulent transport, parallel flow along magnetic field lines, and parallel losses at the limiter or divertor with sheath model boundary conditions. The set of sheath boundary conditions used in the model allows currents to flow through the walls. In addition to details of the numerical approach, results from numerical simulations of turbulence in the Large Plasma Device (LAPD), a linear device featuring straight magnetic field lines, are presented.
The SOL width is a parameter of paramount importance in modern tokamaks as it controls the power density deposited at the divertor plates, critical for plasma-facing material survivability. An understanding of the parameters controlling it has consequently long been sought (Connor et al. 1999 NF 39 2). Prior to Chang et al.(2017 NF 57 11), studies of the tokamak edge have been mostly confined to reduced fluid models and simplified geometries, leaving out important pieces of physics. Here, we analyze the results of a DIII-D simulation performed with the full-f gyrokinetic code XGC1 which includes both turbulence and neoclassical effects in realistic divertor geometry. More specifically, we calculate the particle and heat ExB fluxes along the separatrix, discriminating between equilibrium and turbulent contributions. We find that the density SOL width is impacted almost exclusively by the turbulent electron flux. In this simulation, the level of edge turbulence is regulated by a mechanism we are only beginning to understand: $ abla B$-drifts and ion X-point losses at the top and bottom of the machine, along with ion banana orbits at the low field side (LFS), result in a complex poloidal potential structure at the separatrix which is the cause of the ExB drift pattern that we observe. Turbulence is being suppressed by the shear flows that this potential generates. At the same time, turbulence, along with increased edge collisionality and electron inertia, can influence the shape of the potential structure by making the electrons non-adiabatic. Moreover, being the only means through which the electrons can lose confinement, it needs to be in a balance with the original direct ion orbit losses to maintain charge neutrality.