Do you want to publish a course? Click here

Constraints on the Thermal Contents of the X-ray Cavities of Cluster MS 0735.6+7421 with Sunyaev-Zeldovich Effect Observations

66   0   0.0 ( 0 )
 Added by Zubair Abdulla
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Outbursts from active galactic nuclei (AGN) can inflate cavities in the intracluster medium (ICM) of galaxy clusters and are believed to play the primary role in offsetting radiative cooling in the ICM. However, the details of how the energy from AGN feedback thermalizes to heat the ICM is not well understood, partly due to the unknown composition and energetics of the cavities. The Sunyaev-Zeldovich (SZ) effect, a measure of the integrated pressure along the line of sight, provides a means of measuring the thermal contents of the cavities, to discriminate between thermal, nonthermal, and other sources of pressure support. Here we report measurements of the SZ effect at 30 GHz toward the galaxy cluster MS 0735.6+7421 (MS0735), using the Combined Array for Research in Millimeter-wave Astronomy (CARMA). MS0735 hosts the most energetic AGN outburst known and lobes of radio synchrotron emission coincident with a pair of giant X-ray cavities $sim 200$ across. Our CARMA maps show a clear deficit in the SZ signal coincident with the X-ray identified cavities, when compared to a smooth X-ray derived pressure model. We find that the cavities have very little SZ-contributing material, suggesting that they are either supported by very diffuse thermal plasma with temperature in excess of hundreds of keV, or are not supported thermally. Our results represent the first detection (with $4.4 sigma$ significance) of this phenomenon with the SZ effect.



rate research

Read More

84 - P. Marchegiani 2021
The galaxy cluster MS 0735.6+7421 hosts two large X-ray cavities, filled with radio emission, where a decrease of the Sunyaev-Zeldovich (SZ) effect has been detected, without establishing if its origin is thermal (from a gas with very high temperature) or non-thermal. In this paper we study how thermal and non-thermal contributions to the SZ effect in the cavities are related; in fact, Coulomb interactions with the thermal gas modify the spectrum of low energy non-thermal electrons, which dominate the non-thermal SZ effect; as a consequence, the intensity of the non-thermal SZ effect is stronger for lower density of the thermal gas inside the cavity. We calculate the non-thermal SZ effect in the cavities as a function of the thermal density, and compare the SZ effects produced by thermal and non-thermal components, and with the one from the external Intra Cluster Medium (ICM), searching for the best frequency range where it is possible to disentangle the different contributions. We find that for temperatures inside the cavities higher than $sim1500$ keV the non-thermal SZ effect is expected to dominate on the thermal one, particularly at high frequencies ($ u>500$ GHz), where it can also be a non-negligible fraction of the SZ effect from the external ICM. We also discuss the possible sources of astrophysical bias (as kinetic SZ effect and foreground emission from Galactic dust) and possible ways to address them, as well as necessary improvements in the modeling of the properties of cavities and the ICM.
We examine the thermal energy contents of the intergalactic medium (IGM) over three orders of magnitude in both mass density and gas temperature using thermal Sunyaev-Zeldovich effect (tSZE). The analysis is based on {it Planck} tSZE map and the cosmic density field, reconstructed for the SDSS DR7 volume and sampled on a grid of cubic cells of $(1h^{-1}{rm Mpc})^3$, together with a matched filter technique employed to maximize the signal-to-noise. Our results show that the pressure - density relation of the IGM is roughly a power law given by an adiabatic equation of state, with an indication of steepening at densities higher than about $10$ times the mean density of the universe. The implied average gas temperature is $sim 10^4,{rm K}$ in regions of mean density, $rho_{rm m} sim {overlinerho}_{rm m}$, increasing to about $10^5,{rm K}$ for $rho_{rm m} sim 10,{overlinerho}_{rm m}$, and to $>10^{6},{rm K}$ for $rho_{rm m} sim 100,{overlinerho}_{rm m}$. At a given density, the thermal energy content of the IGM is also found to be higher in regions of stronger tidal fields, likely due to shock heating by the formation of large scale structure and/or feedback from galaxies and AGNs. A comparison of the results with hydrodynamic simulations suggests that the current data can already provide interesting constraints on galaxy formation.
MS 0735.6+7421 is a galaxy cluster which hosts a central radio galaxy with a very steep spectrum, produced by one of the most powerful known jetted active galactic nuclei (AGN). The radio plasma, ejected at nearly light speed from the central AGN, have displaced the intra-cluster medium, leaving two pairs of cavities observable in the X-ray, associated to two different outbursts, and have distributed energy to the surrounding medium. In this work we have performed for the first time a detailed, high-resolution spectral study of the source at radio frequencies and investigated its duty cycle to be compared with previous X-ray estimates. We have used new observations at 144 MHz produced with the LOw Frequency ARray (LOFAR) together with archival data at higher frequencies. At LOFAR frequency, the source presents two large outer radio lobes, wider than at higher frequencies, and a smaller Intermediate lobe located south-west of the core. A new inspection of X-ray data, allowed us to identify an intermediate cavity, associated with that lobe, indicating the presence of a further phase of jet activity. The radio lobes have a steep spectrum even at LOFAR frequencies, reaching $alpha_{144}^{610}=2.9$ in the outer lobes and $alpha_{144}^{610}=2.1$ in the Intermediate lobe. Fitting the lobe spectra using a single injection model of particle ageing, we derived a total age of the source between 170 and 106 Myr, in agreement with the buoyancy and sound crossing time-scales derived from X-ray data. We then reconstructed the duty cycle of the source. There were three phases of jet activity, with the AGN being active for most of the time with only brief quiescent phases, ensuring the repeated heating of the central gas. Finally, energetic estimates revealed that a source of additional pressure support must be present to sustain the bubbles against the pressure of the external medium.
104 - Seunghwan Lim , Houjun Mo , Ran Li 2017
A matched filter technique is applied to the Planck all-sky Compton y-parameter map to measure the thermal Sunyaev-Zeldovich (tSZ) effect produced by galaxy groups of different halo masses selected from large redshift surveys in the low-z Universe. Reliable halo mass estimates are available for all the groups, which allows us to bin groups of similar halo masses to investigate how the tSZ effect depends on halo mass over a large mass range. Filters are simultaneously matched for all groups to minimize projection effects. We find that the integrated y-parameter and the hot gas content it implies are consistent with the predictions of the universal pressure profile model only for massive groups above $10^{14},{rm M}_odot$, but much lower than the model prediction for low-mass groups. The halo mass dependence found is in good agreement with the predictions of a set of simulations that include strong AGN feedback, but simulations including only supernova feedback significantly over predict the hot gas contents in galaxy groups. Our results suggest that hot gas in galaxy groups is either effectively ejected or in phases much below the virial temperatures of the host halos.
We present an analysis of deep Chandra X-ray observations of the galaxy cluster MS 0735.6+7421, which hosts the most energetic radio AGN known. Our analysis has revealed two cavities in its hot atmosphere with diameters of 200-240 kpc. The total cavity enthalpy, mean age, and mean jet power are $9times 10^{61}$ erg, $1.6times 10^{8}$ yr, and $1.7times 10^{46}$ erg/s, respectively. The cavities are surrounded by nearly continuous temperature and surface brightness discontinuities associated with an elliptical shock front of Mach number 1.26 (1.17-1.30) and age of $1.1times 10^{8}$ yr. The shock has injected at least $4times 10^{61}$ erg into the hot atmosphere at a rate of $1.1times 10^{46}$ erg/s. A second pair of cavities and possibly a second shock front are located along the radio jets, indicating that the AGN power has declined by a factor of 30 over the past 100 Myr. The multiphase atmosphere surrounding the central galaxy is cooling at a rate of 36 Msun/yr, but does not fuel star formation at an appreciable rate. In addition to heating, entrainment in the radio jet may be depleting the nucleus of fuel and preventing gas from condensing out of the intracluster medium. Finally, we examine the mean time intervals between AGN outbursts in systems with multiple generations of X-ray cavities. We find that, like MS0735, their AGN rejuvenate on a timescale that is approximately 1/3 of their mean central cooling timescales, indicating that jet heating is outpacing cooling in these systems.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا