We use the ideas of entropic gravity to derive the FRW cosmological model and show that for late time evolution we have an effective cosmological constant. By using the first law of thermodynamics and the modified entropy area relationship derived from the supersymmetric Wheeler-DeWitt equation of the Schwarzschild black hole, we obtain modifications to the Friedmann equations that in the late time regime gives an effective positive cosmological constant. Therefore, this simple model can account for the dark energy component of the universe by providing an entropic origin to the cosmological constant $Lambda$.
The current paper is dedicated to developing a (3+1) decomposition for the minimal gravitational Standard-Model Extension. Our setting is explicit diffeomorphism violation and we focus on the background fields known in the literature as $u$ and $s^{mu u}$. The Hamiltonian formalism is developed for these contributions, which amounts to deriving modified Hamiltonian and momentum constraints. We then study the connection between these modified constraints and the modified Einstein equations. Implications are drawn on the form of the background fields to guarantee the internal consistency of the corresponding modified-gravity theories. In the course of our analysis, we obtain a set of consistency requirements for $u$ and certain sectors of $s^{mu u}$. We argue that the constraint structure remains untouched when these conditions are satisfied. Our results shed light on explicit violations of diffeomorphism invariance and local Lorentz invariance in gravity. They may turn out to be valuable for developing a better understanding of effective modified-gravity theories.
We show that the extended cosmological equation-of-state developed starting from a Chaplygin equation-of-state, recently applied to stellar modeling, is a viable dark energy model consistent with standard scalar potentials. Moreover we find a Lagrangian formulation based on a canonical scalar field with the appropriate self-interaction potential. Finally, we fit the scalar potential obtained numerically with concrete functions well studied in the literature. Our results may be of interest to model builders and particle physicists.
Self tuning is one of the few methods for dynamically cancelling a large cosmological constant and yet giving an accelerating universe. Its drawback is that it tends to screen all sources of energy density, including matter. We develop a model that tempers the self tuning so the dynamical scalar field still cancels an arbitrary cosmological constant, including the vacuum energy through any high energy phase transitions, without affecting the matter fields. The scalar-tensor gravitational action is simple, related to cubic Horndeski gravity, with a nonlinear derivative interaction plus a tadpole term. Applying shift symmetry and using the property of degeneracy of the field equations we find families of functions that admit de Sitter solutions with expansion rates that are independent of the magnitude of the cosmological constant and preserve radiation and matter dominated phases. That is, the method can deliver a standard cosmic history including current acceleration, despite the presence of a Planck scale cosmological constant.
Recently, the variation of the Planck mass in the General Relativistic Einstein-Hilbert action was proposed as a self-tuning mechanism of the cosmological constant, preventing Standard Model vacuum energy from freely gravitating and enabling an estimation of the magnitude of its observed value. We explore here new aspects of this proposal. We first develop an equivalent Einstein-frame formalism to the current Jordan-frame formulation of the mechanism and use this to highlight similarities and differences of self-tuning to the sequestering mechanism. We then show how with an extension of the local self-tuning action by a coupled Gauss-Bonnet term and a companion four-form field strength, graviton loops can be prevented from incapacitating the degravitation of the Standard Model vacuum energy. For certain cases, we furthermore find that this extension can be recast as a Horndeski scalar-tensor theory and be embedded in the conventional local self-tuning formalism. We then explore the possibility of a unification of inflation with self-tuning. The resulting equations can alternatively be used to motivate a multiverse interpretation. In this context, we revisit the coincidence problem and provide an estimation for the probability of the emergence of intelligent life in our Universe as a function of cosmic age, inferred from star and terrestrial planet formation processes. We conclude that we live at a very typical epoch, where we should expect the energy densities of the cosmological constant and matter to be of comparable size. For a dimensionless quantity to compare the emergence of life throughout the cosmic history of different universes in an anthropic analysis of the multiverse, we choose the order of magnitude difference of the evolving horizon size of a universe to the size of its proton as the basic building block of atoms, molecules, and eventually life. (abridged)
Screened modified gravity (SMG) is a kind of scalar-tensor theories with screening mechanisms, which can generate screening effect to suppress the fifth force in high density environments and pass the solar system tests. Meanwhile, the potential of scalar field in the theories can drive the acceleration of the late universe. In this paper, we calculate the parameterized post-Newtonian (PPN) parameters $gamma$ and $beta$, the effective gravitational constant $G_{rm eff}$ and the effective cosmological constant $Lambda$ for SMG with a general potential $V$ and coupling function $A$. The dependence of these parameters on the model parameters of SMG and/or the physical properties of the source object are clearly presented. As an application of these results, we focus on three specific theories of SMG (chameleon, symmetron and dilaton models). Using the formulae to calculate their PPN parameters and cosmological constant, we derive the constraints on the model parameters by combining the observations on solar system and cosmological scales.
I. Diaz-Salda~na
,J. Lopez-Dominguez
,M. Sabido
.
(2018)
.
"An Effective Cosmological Constant From an Entropic Formulation of Gravity"
.
Miguel Sabido
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا