Do you want to publish a course? Click here

Low magnetic damping of ferrimagnetic GdFeCo alloys

373   0   0.0 ( 0 )
 Added by Duck-Ho Kim
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate the Gilbert damping parameter for rare earth (RE)-transition metal (TM) ferrimagnets over a wide temperature range. Extracted from the field-driven magnetic domain-wall mobility, the Gilbert damping parameter was as low as 0.0072 and was almost constant across the angular momentum compensation temperature, starkly contrasting previous predictions that the Gilbert damping parameter should diverge at the angular momentum compensation temperature due to vanishing total angular momentum. Thus, magnetic damping of RE-TM ferrimagnets is not related to the total angular momentum but is dominated by electron scattering at the Fermi level where the TM has a dominant damping role.



rate research

Read More

We provide a macroscopic theory and experimental results for magnetic resonances of antiferromagnetically-coupled ferrimagnets. Our theory, which interpolates the dynamics of antiferromagnets and ferromagnets smoothly, can describe ferrimagnetic resonances across the angular momentum compensation point. We also present experimental results for spin-torque induced ferrimagnetic resonance at several temperatures. The spectral analysis based on our theory reveals that the Gilbert damping parameter, which has been considered to be strongly temperature dependent, is insensitive to temperature. We envision that our work will facilitate further investigation of ferrimagnetic dynamics by providing a theoretical framework suitable for a broad range of temperatures.
We present results on the identification of phase transitions in ferrimagnetic GdFeCo alloys using machine learning. The approach for finding phase transitions in the system is based on the `learning by confusion scheme, which allows one to characterize phase transitions using a universal $W$-shape. By applying the `learning by confusion scheme, we obtain 2D $W$-a shaped surface that characterizes a triple phase transition point of the GdFeCo alloy. We demonstrate that our results are in the perfect agreement with the procedure of the numerical minimization of the thermodynamical potential, yet our machine-learning-based scheme has the potential to provide a speedup in the task of the phase transition identification.
It has been predicted that transverse spin current can propagate coherently (without dephasing) over a long distance in antiferromagnetically ordered metals. Here, we estimate the dephasing length of transverse spin current in ferrimagnetic CoGd alloys by spin pumping measurements across the compensation point. A modified drift-diffusion model, which accounts for spin-current transmission through the ferrimagnet, reveals that the dephasing length is about 4-5 times longer in nearly compensated CoGd than in ferromagnetic metals. This finding suggests that antiferromagnetic order can mitigate spin dephasing -- in a manner analogous to spin echo rephasing for nuclear and qubit spin systems -- even in structurally disordered alloys at room temperature. We also find evidence that transverse spin current interacts more strongly with the Co sublattice than the Gd sublattice. Our results provide fundamental insights into the interplay between spin current and antiferromagnetic order, which are crucial for engineering spin torque effects in ferrimagnetic and antiferromagnetic metals.
The phenomenology of magnetic damping is of critical importance for devices that seek to exploit the electronic spin degree of freedom since damping strongly affects the energy required and speed at which a device can operate. However, theory has struggled to quantitatively predict the damping, even in common ferromagnetic materials. This presents a challenge for a broad range of applications in spintronics and spin-orbitronics that depend on materials and structures with ultra-low damping. Such systems enable many experimental investigations that further our theoretical understanding of numerous magnetic phenomena such as damping and spin-transport mediated by chirality and the Rashba effect. Despite this requirement, it is believed that achieving ultra-low damping in metallic ferromagnets is limited due to the scattering of magnons by the conduction electrons. However, we report on a binary alloy of Co and Fe that overcomes this obstacle and exhibits a damping parameter approaching 0.0001, which is comparable to values reported only for ferrimagnetic insulators. We explain this phenomenon by a unique feature of the bandstructure in this system: The density of states exhibits a sharp minimum at the Fermi level at the same alloy concentration at which the minimum in the magnetic damping is found. This discovery provides both a significant fundamental understanding of damping mechanisms as well as a test of theoretical predictions.
Magnetic skyrmions are swirling magnetic textures with novel characteristics suitable for future spintronic and topological applications. Recent studies confirmed the room-temperature stabilization of skyrmions in ultrathin ferromagnets. However, such ferromagnetic skyrmions show undesirable topological effect, the skyrmion Hall effect, which leads to their current-driven motion towards device edges, where skyrmions could easily be annihilated by topographic defects. Recent theoretical studies have predicted enhanced current-driven behaviour for antiferromagnetically exchange-coupled skyrmions. Here we present the stabilization of these skyrmions and their current-driven dynamics in ferrimagnetic GdFeCo films. By utilizing element-specific X-ray imaging, we find that the skyrmions in the Gd and FeCo sublayers are antiferromagnetically exchange-coupled. We further confirm that ferrimagnetic skyrmions can move at a velocity of ~50 m s-1 with reduced skyrmion Hall angle, {theta}SkHE ~20{deg}. Our findings open the door to ferrimagnetic and antiferromagnetic skyrmionics while providing key experimental evidences of recent theoretical studies.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا