Thermal rectification and heat amplification in a nonequilibrium V-type three-level system


Abstract in English

Thermal rectification and heat amplification are investigated in a nonequilibrium V-type three-level system with quantum interference. By applying the Redfield master equation combined with full counting statistics, we analyze the steady state heat transport. The noise-induced interference is found to be able to rectify the heat current, which paves a new way to design quantum thermal rectifier. Within the three-reservoir setup, the heat amplification is clearly identified far-from equilibrium, which is in absence of the negative differential thermal conductance.

Download