On the Convergence Rate of Stochastic Mirror Descent for Nonsmooth Nonconvex Optimization


Abstract in English

In this paper, we investigate the non-asymptotic stationary convergence behavior of Stochastic Mirror Descent (SMD) for nonconvex optimization. We focus on a general class of nonconvex nonsmooth stochastic optimization problems, in which the objective can be decomposed into a relatively weakly convex function (possibly non-Lipschitz) and a simple non-smooth convex regularizer. We prove that SMD, without the use of mini-batch, is guaranteed to converge to a stationary point in a convergence rate of $ mathcal{O}(1/sqrt{t}) $. The efficiency estimate matches with existing results for stochastic subgradient method, but is evaluated under a stronger stationarity measure. Our convergence analysis applies to both the original SMD and its proximal version, as well as the deterministic variants, for solving relatively weakly convex problems.

Download