Do you want to publish a course? Click here

Galactic Archeology with the AEGIS Survey: The Evolution of Carbon and Iron in the Galactic Halo

105   0   0.0 ( 0 )
 Added by Jinmi Yoon
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Understanding the evolution of carbon and iron in the Milky Ways halo is of importance because these two elements play crucial roles constraining star formation, Galactic assembly, and chemical evolution in the early Universe. Here, we explore the spatial distributions of carbonicity, [C/Fe], and metallicity, [Fe/H], of the halo system based on medium-resolution ($R sim$ 1,300) spectroscopy of $sim$58,000 stars in the Southern Hemisphere from the AAOmega Evolution of Galactic Structure (AEGIS) survey. The AEGIS carbonicity map exhibits a positive gradient with distance, as similarly found for the Sloan Digital Sky Survey (SDSS) carbonicity map of Lee et al. The metallicity map confirms that [Fe/H] decreases with distance, from the inner halo to the outer halo. We also explore the formation and chemical-evolution history of the halo by considering the populations of carbon-enhanced metal-poor (CEMP) stars present in the AEGIS sample. The cumulative and differential frequencies of CEMP-no stars (as classified by their characteristically lower levels of absolute carbon abundance, $A$(C) $leq$ 7.1 for sub-giants and giants) increases with decreasing metallicity, and is textit{substantially higher than previous determinations} for CEMP stars as a whole. In contrast, that of CEMP-$s$ stars (with higher $A$(C)), remains almost flat, at a value $sim$10%, in the range $-,4.0 lesssim$ [Fe/H] $lesssim-$2.0. The distinctly different behaviors of the CEMP-no and CEMP-$s$ stars relieve the tension with population-synthesis models assuming a binary mass-transfer origin, which previously struggled to account for the higher reported frequencies of CEMP stars, taken as a whole, at low metallicity.



rate research

Read More

The new data release (DR5) of the RAdial Velocity Experiment (RAVE) includes radial velocities of 520,781 spectra of 457,588 individual stars, of which 215,590 individual stars are released in the Tycho-Gaia astrometric solution (TGAS) in Gaia DR1. Therefore, RAVE contains the largest TGAS overlap of the recent and ongoing Milky Way spectroscopic surveys. Most of the RAVE stars also contain stellar parameters (effective temperature, surface gravity, overall metallicity), as well as individual abundances for Mg, Al, Si, Ca, Ti, Fe, and Ni. Combining RAVE with TGAS brings the uncertainties in space velocities down by a factor of 2 for stars in the RAVE volume -- 10 km/s uncertainties in space velocities are now able to be derived for the majority (70%) of the RAVE-TGAS sample, providing a powerful platform for chemo-dynamic analyses of the Milky Way. Here we discuss the RAVE-TGAS impact on Galactic archaeology as well as how the Gaia parallaxes can be used to break degeneracies within the RAVE spectral regime for an even better return in the derivation of stellar parameters and abundances.
We present Spitzer IRS spectra of four carbon stars located in the Galactic Halo and the thick disc. The spectra display typical features of carbon stars with SiC dust emission and C$_2$H$_2$ molecular absorption. Dust radiative transfer models and infrared colors enable us to determine the dust production rates for these stars whilst prior CO measurements yield expansion velocities and total mass-loss rates. The gas properties (low expansion velocities (around 7 km/s) and strong C$_2$H$_2$ molecular absorption bands) are consistent with the stars being metal-poor. However the dust content of these stars (strong SiC emission bands) is very similar to what is observed in metal-rich carbon stars. The strong SiC emission may indicate that the carbon stars derive from a metal-rich population, or that these AGB stars produce silicon. The origin of the halo carbon stars is not known. They may be extrinsinc halo stars belonging to the halo population, they may have been accreted from a satellite galaxy such as the Sagittarius Dwarf Spheroidal Galaxy, or they may be escapees from the galactic disk. If the stars are intrinsically metal-rich, an origin in the disc would be most likely. If an $alpha$-element enhancement can be confirmed, it would argue for an origin in the halo (which is known to be $alpha$-enhanced) or a Galactic satellite.
This paper focuses on carbon that is one of the most abundant elements in the Universe and is of high importance in the field of nucleosynthesis and galactic and stellar evolution. Even nowadays, the origin of carbon and the relative importance of massive and low- to intermediate-mass stars in producing it is still a matter of debate. In this paper we aim at better understanding the origin of carbon by studying the trends of [C/H], [C/Fe],and [C/Mg] versus [Fe/H], and [Mg/H] for 2133 FGK dwarf stars from the fifth Gaia-ESO Survey internal data release (GES iDR5). The availability of accurate parallaxes and proper motions from Gaia DR2 and radial velocities from GES iDR5 allows us to compute Galactic velocities, orbits and absolute magnitudes and, for 1751 stars, ages via a Bayesian approach. Three different selection methodologies have been adopted to discriminate between thin and thick disk stars. In all the cases, the two stellar groups show different abundance ratios, [C/H], [C/Fe], and [C/Mg], and span different age intervals, with the thick disk stars being, on average, older than those in the thin disk. The behaviours of [C/H], [C/Fe], and [C/Mg] versus [Fe/H], [Mg/H], and age all suggest that C is primarily produced in massive stars like Mg. The increase of [C/Mg] for young thin disk stars indicates a contribution from low-mass stars or the increased C production from massive stars at high metallicities due to the enhanced mass loss. The analysis of the orbital parameters Rmed and |Zmax| support an inside-out and upside-down formation scenario for the disks of Milky Way.
Due to their volatile nature, when sulfur and zinc are observed in external galaxies, their determined abundances represent the gas-phase abundances in the interstellar medium. This implies that they can be used as tracers of the chemical enrichment of matter in the Universe at high redshift. Comparable observations in stars are more difficult and, until recently, plagued by small number statistics. We wish to exploit the Gaia ESO Survey (GES) data to study the behaviour of sulfur and zinc abundances of a large number of Galactic stars, in a homogeneous way. By using the UVES spectra of the GES sample, we are able to assemble a sample of 1301 Galactic stars, including stars in open and globular clusters in which both sulfur and zinc were measured. We confirm the results from the literature that sulfur behaves as an alpha-element. We find a large scatter in [Zn/Fe] ratios among giant stars around solar metallicity. The lower ratios are observed in giant stars at Galactocentric distances less than 7.5 kpc. No such effect is observed among dwarf stars, since they do not extend to that radius. Given the sample selection, giants and dwarfs are observed at different Galactic locations, and it is plausible, and compatible with simple calculations, that Zn-poor giants trace a younger population more polluted by SN Ia yields. It is necessary to extend observations in order to observe both giants and dwarfs at the same Galactic location. Further theoretical work on the evolution of zinc is also necessary.
The galaxy formation process in the $Lambda$-Cold Dark Matter scenario can be constrained from the analysis of stars in the Milky Ways halo system. We examine the variation of chemical abundances in distant halo stars observed by the Apache Point Galactic Evolution Experiment (APOGEE), as a function of distance from the Galactic center ($r$) and iron abundance ([M/H]), in the range 5 $lesssim r lesssim$ 30 kpc and $-2.5 <$ [M/H] $<$ 0.0. We perform a statistical analysis of the abundance ratios derived by the APOGEE pipeline (ASPCAP) and distances calculated by several approaches. Our analysis reveals signatures of a different chemical enrichment between the inner and outer regions of the halo, with a transition at about 15 kpc. The derived metallicity distribution function exhibits two peaks, at [M/H] $sim -1.5$ and $sim -2.1$, consistent with previously reported halo metallicity distributions. We obtain a difference of $sim 0.1$ dex for $alpha$-element-to-iron ratios for stars at $r > 15$ kpc and [M/H] $> -1.1$ (larger in the case of O, Mg and S) with respect to the nearest halo stars. This result confirms previous claims for low-$alpha$ stars found at larger distances. Chemical differences in elements with other nucleosynthetic origins (Ni, K, Na, and Al) are also detected. C and N do not provide reliable information about the interstellar medium from which stars formed because our sample comprises RGB and AGB stars and can experience mixing of material to their surfaces.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا