Complex spatiotemporal patterns of action potential duration have been shown to occur in many mammalian hearts due to a period-doubling bifurcation that develops with increasing frequency of stimulation. Here, through high-resolution optical mapping and numerical simulations, we quantify voltage length scales in canine ventricles via spatiotemporal correlation analysis as a function of stimulation frequency and during fibrillation. We show that i) length scales can vary from 40 to 20 cm during one to one responses, ii) a critical decay length for the onset of the period-doubling bifurcation is present and decreases to less than 3 cm before the transition to fibrillation occurs, iii) fibrillation is characterized by a decay length of about 1 cm. On this evidence, we provide a novel theoretical description of cardiac decay lengths introducing an experimental-based conduction velocity dispersion relation that fits the measured wavelengths with a fractional diffusion exponent of 1.5. We show that an accurate phenomenological mathematical model of the cardiac action potential, fine-tuned upon classical restitution protocols, can provide the correct decay lengths during periodic stimulations but that a domain size scaling via the fractional diffusion exponent of 1.5 is necessary to reproduce experimental fibrillation dynamics. Our study supports the need of generalized reaction-diffusion approaches in characterizing the multiscale features of action potential propagation in cardiac tissue. We propose such an approach as the underlying common basis of synchronization in excitable biological media.