The odds ratio (OR) is a measure of effect size commonly used in observational research. OR reflects statistical association between a binary outcome, such as the presence of a health condition, and a binary predictor, such as an exposure to a pollutant. Statistical inference and interval estimation for OR are often performed on the logarithmic scale, due to asymptotic convergence of log(OR) to a normal distribution. Here, we propose a new normalized measure of effect size, $gamma$, and derive its asymptotic distribution. We show that the new statistic, based on the $gamma$ distribution, is more powerful than the traditional one for testing the hypothesis $H_0$: log(OR)=0. The new normalized effect size is termed `gamma prime in the spirit of $D$, a normalized measure of genetic linkage disequilibrium, which ranges from -1 to 1 for a pair of genetic loci. The normalization constant for $gamma$ is based on the maximum range of the standardized effect size, for which we establish a peculiar connection to the Laplace Limit Constant. Furthermore, while standardized effects are of little value on their own, we propose a powerful application, in which standardized effects are employed as an intermediate step in an approximate, yet accurate posterior inference for raw effect size measures, such as log(OR) and $gamma$.