We present a theoretical study of electronic transport in a hybrid junction consisting of an excitonic insulator sandwiched between a normal and a superconducting electrode. The normal region is described as a two-band semimetal and the superconducting lead as a two-band superconductor. In the excitonic insulator region, the coupling between carriers in the two bands leads to an excitonic condensate and a gap $Gamma$ in the quasiparticle spectrum. We identify four different scattering processes at both interfaces. Two types of normal reflection, intra- and inter-band; and two different Andreev reflections, one retro-reflective within the same band and one specular-reflective between the two bands. We calculate the differential conductance of the structure and show the existence of a minimum at voltages of the order of the excitonic gap. Our findings are useful towards the detection of the excitonic condensate and provide a plausible explanation of recent transport experiments on HgTe quantum wells and InAs/GaSb bilayer systems.