Do you want to publish a course? Click here

Radial velocity follow-up of GJ1132 with HARPS. A precise mass for planet b and the discovery of a second planet

140   0   0.0 ( 0 )
 Added by Xavier Bonfils
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

GJ1132 is a nearby red dwarf known to host a transiting Earth-size planet. After its initial detection, we pursued an intense follow-up with the HARPS velocimeter. We now confirm the detection of GJ1132b with radial velocities only. We refined its orbital parameters and, in particular, its mass ($m_b = 1.66pm0.23 M_oplus$), density ($rho_b = 6.3pm1.3$ g.cm$^{-3}$) and eccentricity ($e_b < 0.22 $; 95%). We also detect at least one more planet in the system. GJ1132c is a super-Earth with period $P_c = 8.93pm0.01$ days and minimum mass $m_c sin i_c = 2.64pm0.44~M_oplus$. Receiving about 1.9 times more flux than Earth in our solar system, its equilibrium temperature is that of a temperate planet ($T_{eq}=230-300$ K for albedos $A=0.75-0.00$) and places GJ1132c near the inner edge of the so-called habitable zone. Despite an a priori favourable orientation for the system, $Spitzer$ observations reject most transit configurations, leaving a posterior probability $<1%$ that GJ1132c transits. GJ1132(d) is a third signal with period $P_d = 177pm5$ days attributed to either a planet candidate with minimum mass $m_d sin i_d = 8.4^{+1.7}_{-2.5}~M_oplus$ or stellar activity. (abridged)



rate research

Read More

We analyze the CORALIE/HARPS sample of exoplanets (Mayor et al. 2011) found by the Doppler radial velocity method for signs of the predicted desert at 10-$100 M_odot$ caused by runaway gas accretion at semimajor axes of $< 3,$AU. We find that these data are not consistent with this prediction. This result is similar to the finding by the MOA gravitational microlensing survey that found no desert in the exoplanet distribution for exoplanets in slightly longer period orbits and somewhat lower host masses (Suzuki et al. 2018). Together, these results imply that the runaway accretion scenario of the core accretion theory does not have a large influence on the final mass and semimajor axis distribution of exoplanets.
The Sun is the only star whose surface can be directly resolved at high resolution, and therefore constitutes an excellent test case to explore the physical origin of stellar radial-velocity (RV) variability. We present HARPS observations of sunlight scattered off the bright asteroid 4/Vesta, from which we deduced the Suns activity-driven RV variations. In parallel, the HMI instrument onboard the Solar Dynamics Observatory provided us with simultaneous high spatial resolution magnetograms, Dopplergrams, and continuum images of the Sun in the Fe I 6173A line. We determine the RV modulation arising from the suppression of granular blueshift in magnetised regions and the flux imbalance induced by dark spots and bright faculae. The rms velocity amplitudes of these contributions are 2.40 m/s and 0.41 m/s, respectively, which confirms that the inhibition of convection is the dominant source of activity-induced RV variations at play, in accordance with previous studies. We find the Doppler imbalances of spot and plage regions to be only weakly anticorrelated. Lightcurves can thus only give incomplete predictions of convective blueshift suppression. We must instead seek proxies that track the plage coverage on the visible stellar hemisphere directly. The chromospheric flux index R_HK derived from the HARPS spectra performs poorly in this respect, possibly because of the differences in limb brightening/darkening in the chromosphere and photosphere. We also find that the activity-driven RV variations of the Sun are strongly correlated with its full-disc magnetic flux density, which may become a useful proxy for activity-related RV noise.
We present results from a data challenge posed to the radial velocity (RV) community: namely, to quantify the Bayesian evidence for n={0,1,2,3} planets in a set of synthetically generated RV datasets containing a range of planet signals. Participating teams were provided the same likelihood function and set of priors to use in their analysis. They applied a variety of methods to estimate Z, the marginal likelihood for each n-planet model, including cross-validation, the Laplace approximation, importance sampling, and nested sampling. We found the dispersion in Z across different methods grew with increasing n-planet models: ~3 for 0-planets, ~10 for 1-planet, ~100-1000 for 2-planets, and >10,000 for 3-planets. Most internal estimates of uncertainty in Z for individual methods significantly underestimated the observed dispersion across all methods. Methods that adopted a Monte Carlo approach by comparing estimates from multiple runs yielded plausible uncertainties. Finally, two classes of numerical algorithms (those based on importance and nested samplers) arrived at similar conclusions regarding the ratio of Zs for n and (n+1)-planet models. One analytic method (the Laplace approximation) demonstrated comparable performance. We express both optimism and caution: we demonstrate that it is practical to perform rigorous Bayesian model comparison for <=3-planet models, yet robust planet discoveries require researchers to better understand the uncertainty in Z and its connections to model selection.
208 - F. Bouchy , C. Moutou , D. Queloz 2009
Radial Velocity follow-up is essential to establish or exclude the planetary nature of a transiting companion as well as to accurately determine its mass. Here we present some elements of an efficient Doppler follow-up strategy, based on high-resolution spectroscopy, devoted to the characterization of transiting candidates. Some aspects and results of the radial velocity follow-up of the CoRoT space mission are presented in order to illustrate the strategy used to deal with the zoo of transiting candidates.
We surveyed the 25 Ori association for direct-imaging companions. This association has an age of only few million years. Among other targets, we observed CVSO 30, which has recently been identified as the first T Tauri star found to host a transiting planet candidate. We report on photometric and spectroscopic high-contrast observations with the Very Large Telescope, the Keck telescopes, and the Calar Alto observatory. They reveal a directly imaged planet candidate close to the young M3 star CVSO 30. The JHK-band photometry of the newly identified candidate is at better than 1 sigma consistent with late-type giants, early-T and early-M dwarfs, and free-floating planets. Other hypotheses such as galaxies can be excluded at more than 3.5 sigma. A lucky imaging z photometric detection limit z= 20.5 mag excludes early-M dwarfs and results in less than 10 MJup for CVSO 30 c if bound. We present spectroscopic observations of the wide companion that imply that the only remaining explanation for the object is that it is the first very young (< 10 Myr) L-T-type planet bound to a star, meaning that it appears bluer than expected as a result of a decreasing cloud opacity at low effective temperatures. Only a planetary spectral model is consistent with the spectroscopy, and we deduce a best-fit mass of 4-5 Jupiter masses (total range 0.6-10.2 Jupiter masses). This means that CVSO 30 is the first system in which both a close-in and a wide planet candidate are found to have a common host star. The orbits of the two possible planets could not be more different: they have orbital periods of 10.76 hours and about 27000 years. The two orbits may have formed during a mutual catastrophic event of planet-planet scattering.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا