No Arabic abstract
With the photometric data from the SDSS survey, the spectroscopic data from the SDSS/SEGUE and the LAMOST surveys, and the astrometric data from the Gaia DR2, we have identified 71 highly-probable member stars of the GD-1 cold stellar stream spread along almost its entire length (i.e. from 126 to 203 degree in Right Ascension). With the accurate spectroscopic (i.e. metallicity and line-of-sight velocity) and astrometric (i.e. proper motions) information, the position-velocity diagrams, i.e. $phi_{1}$-$mu_{alpha}$, $phi_{1}$-$mu_{delta}$ and $phi_{1}$-${v_{rm gsr}}$, of the GD-1 stream are well mapped. The stream has an average metallicity [Fe/H] $= -1.95 pm 0.23$. The rich information of member stars of the stream now available allow one not only to model its origin, but also to place strong constraints on the mass distribution and the gravitational potential of the Milky Way.
Based on the second Gaia data (Gaia DR2) and spectroscopy from the LAMOST Data Release 5, we defined the high-velocity (HiVel) stars sample as those stars with $v_{mathrm{gc}} > 0.85 v_{mathrm{esc}}$, and derived the final sample of 24 HiVel stars with stellar astrometric parameters and radial velocities. Most of the HiVel stars are metal-poor and $alpha$-enhanced. In order to further explore the origin of these HiVel stars, we traced the backwards orbits of each HiVel star in the Galactic potential to derive probability parameters which are used to classify these HiVel stars. Of these, 5 stars are from the tidal debris of disrupted dwarf galaxy and 19 stars are runaway-star candidates which originate from the stellar disk.
We report the discovery of two new unbound hypervelocity stars (HVSs) from the LAMOST spectroscopic surveys. They are respectively a B2V type star of ~ 7 M$_{rm odot}$ with a Galactic rest-frame radial velocity of 502 km/s at a Galactocentric radius of ~ 21 kpc and a B7V type star of ~ 4 M$_{rm odot}$ with a Galactic rest-frame radial velocity of 408 km/s at a Galactocentric radius of ~ 30 kpc. The origins of the two HVSs are not clear given their currently poorly measured proper motions. However, the future data releases of Gaia should provide proper motion measurements accurate enough to solve this problem. The ongoing LAMOST spectroscopic surveys are expected to yield more HVSs to form a statistical sample, providing vital constraint on understanding the nature of HVSs and their ejection mechanisms.
Gaia is regularly producing Alerts on objects where photometric variability has been detected. The physical nature of these objects has often to be determined with the complementary observations from ground-based facilities. We have compared the list of Gaia Alerts (until 20181101) with archival LAMOST and SDSS spectroscopic data. The date of the ground-based observation rarely corresponds to the date of the Alert, but this allows at least the identification of the source if it is persistent, or the host galaxy if the object was only transient like a supernova. A list of Gaia Nuclear Transients from Kostrzewa-Rutkowska et al. (2018) has been included in this search also. We found 26 Gaia Alerts with spectra in LAMOST+SDSS labelled as stars (12 with multi-epoch spectra). A majority of them are CVs. Similarly 206 Gaia Alerts have associated spectra labelled as galaxies (49 with multi-epoch spectra). Those spectra were generally obtained on a date different from the Alert date, are mostly emission-line galaxies, leading to the suspicion that most of the Alerts were due to a SN. As for the GNT list, we found 55 associated spectra labelled as galaxies (13 with multi-epoch spectra). In two galaxies, Gaia17aal and GNTJ170213+2543, was the date of the spectroscopic observation close enough to the Alert date: we find a trace of the SN itself in their LAMOST spectrum, both classified here as a type Ia SN. The GNT sample has a higher proportion of AGNs, suggesting that some of the detected variations are also due to the AGN itself. Similar for Quasars, we found 30 Gaia Alerts but 68 GNT cases have single epoch quasar spectra, while 12 plus 23 have multi-epoch spectra. For ten out of these 35, their multi-epoch spectra show appearance or disappearance of the broad Balmer lines and also variations in the continuum, qualifying them as Changing Look Quasars.
We determined the chemical and kinematic properties of the Galactic thin and thick disk using a sample of 307,246 A/F/G/K-type giant stars from the LAMOST spectroscopic survey and Gaia DR2 survey. Our study found that the thick disk globally exhibits no metallicity radial gradient, but the inner disk ($R le 8$ kpc) and the outer disk ($R>8$ kpc) have different gradients when they are studied separately. The thin disk also shows two different metallicity radial gradients for the inner disk and the outer disk, and has steep metallicity vertical gradient of d[Fe/H]/d$|z|$ $=-0.12pm0.0007$ dex kpc$^{-1}$, but it becomes flat when it is measured at increasing radial distance, while the metallicity radial gradient becomes weaker with increasing vertical distance. Adopting a galaxy potential model, we derived the orbital eccentricity of sample stars and found a downtrend of average eccentricity with increasing metallicity for the thick disk. The variation of the rotation velocity with the metallicity shows a positive gradient for the thick disk stars and a negative one for the thin disk stars. Comparisons of our observed results with models of disk formation suggest that radial migration could have influenced the chemical evolution of the thin disk. The formation of the thick disk could be affected by more than one processes: the accretion model could play an indispensable role, while other formation mechanisms, such as the radial migration or heating scenario model could also have a contribution.
Using deep photometric data from CFHT/Megacam, we study the morphology and density of the GD-1 stream, one of the longest and coldest stellar streams in the Milky Way. Our deep data recovers the lower main sequence of the stream with unprecedented quality, clearly separating it from Milky Way foreground and background stars. An analysis of the distance to different parts of the stream shows that GD-1 lies at a heliocentric distance between 8 and 10 kpc, with only a shallow gradient across 45 deg on the sky. Matched filter maps of the stream density show clear density variations, such as deviations from a single orbital track and tentative evidence for stream fanning. We also detect a clear under-density in the middle of the stream track at $varphi_{1}$=-45 deg surrounded by overdense stream segments on either side. This location is a promising candidate for the elusive missing progenitor of the GD-1 stream. We conclude that the GD-1 stream has clearly been disturbed by interactions with the Milky Way disk or other sub-halos.