Do you want to publish a course? Click here

Asteroids in the High cadence Transient Survey

48   0   0.0 ( 0 )
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on the serendipitous observations of Solar System objects imaged during the High cadence Transient Survey (HiTS) 2014 observation campaign. Data from this high cadence, wide field survey was originally analyzed for finding variable static sources using Machine Learning to select the most-likely candidates. In this work we search for moving transients consistent with Solar System objects and derive their orbital parameters. We use a simple, custom detection algorithm to link trajectories and assume Keplerian motion to derive the asteroids orbital parameters. We use known asteroids from the Minor Planet Center (MPC) database to assess the detection efficiency of the survey and our search algorithm. Trajectories have an average of nine detections spread over 2 days, and our fit yields typical errors of $sigma_asim 0.07 ~{rm AU}$, $sigma_{rm e} sim 0.07 $ and $sigma_isim 0.^{circ}5~ {rm deg}$ in semi-major axis, eccentricity, and inclination respectively for known asteroids in our sample. We extract 7,700 orbits from our trajectories, identifying 19 near Earth objects, 6,687 asteroids, 14 Centaurs, and 15 trans-Neptunian objects. This highlights the complementarity of supernova wide field surveys for Solar System research and the significance of machine learning to clean data of false detections. It is a good example of the data--driven science that LSST will deliver.



rate research

Read More

The Dharma Planet Survey (DPS) aims to monitor about 150 nearby very bright FGKM dwarfs (within 50 pc) during 2016$-$2020 for low-mass planet detection and characterization using the TOU very high resolution optical spectrograph (R$approx$100,000, 380-900nm). TOU was initially mounted to the 2-m Automatic Spectroscopic Telescope at Fairborn Observatory in 2013-2015 to conduct a pilot survey, then moved to the dedicated 50-inch automatic telescope on Mt. Lemmon in 2016 to launch the survey. Here we report the first planet detection from DPS, a super-Earth candidate orbiting a bright K dwarf star, HD 26965. It is the second brightest star ($V=4.4$ mag) on the sky with a super-Earth candidate. The planet candidate has a mass of 8.47$pm0.47M_{rm Earth}$, period of $42.38pm0.01$ d, and eccentricity of $0.04^{+0.05}_{-0.03}$. This RV signal was independently detected by Diaz et al. (2018), but they could not confirm if the signal is from a planet or from stellar activity. The orbital period of the planet is close to the rotation period of the star (39$-$44.5 d) measured from stellar activity indicators. Our high precision photometric campaign and line bisector analysis of this star do not find any significant variations at the orbital period. Stellar RV jitters modeled from star spots and convection inhibition are also not strong enough to explain the RV signal detected. After further comparing RV data from the stars active magnetic phase and quiet magnetic phase, we conclude that the RV signal is due to planetary-reflex motion and not stellar activity.
Using the first 18 months of the Pan-STARRS 1 survey we have identified 33 candidate high-amplitude objects for follow-up observations and carried out observations of 22 asteroids. 4 of the observed objects were found to have observed amplitude $A_{obs}geq 1.0$ mag. We find that these high amplitude objects are most simply explained by single rubble pile objects with some density-dependent internal strength, allowing them to resist mass shedding even at their highly elongated shapes. 3 further objects although below the cut-off for high-amplitude had a combination of elongation and rotation period which also may require internal cohesive strength, depending on the density of the body. We find that none of the high-amplitude asteroids identified here require any unusual cohesive strengths to resist rotational fission. 3 asteroids were sufficiently observed to allow for shape and spin pole models to be determined through light curve inversion. 45864 was determined to have retrograde rotation with spin pole axes $lambda=218pm 10^{circ}, beta=-82pm 5^{circ}$ and asteroid 206167 was found to have best fit spin pole axes $lambda= 57 pm 5^{circ}$, $beta=-67 pm 5^{circ}$. An additional object not initially measured with $A_{obs}>1.0$ mag, 49257, was determined to have a shape model which does suggest a high-amplitude object. Its spin pole axes were best fit for values $lambda=112pm 6^{circ}, beta=6pm 5^{circ}$. In the course of this project to date no large super-fast rotators ($P_{rot} < 2.2$ h) have been identified.
M-type asteroids, as defined in the Tholen taxonomy (Tholen, 1984), are medium albedo bodies supposed to have a metallic composition and to be the progenitors both of differentiated iron-nickel meteorites and enstatite chondrites. We carried out a spectroscopic survey in the visible and near infrared wavelength range (0.4-2.5 micron) of 30 asteroids chosen from the population of asteroids initially classified as Tholen M -types, aiming to investigate their surface composition. The data were obtained during several observing runs during the years 2004-2007 at the TNG, NTT, and IRTF telescopes. We computed the spectral slopes in several wavelength ranges for each observed asteroid, and we searched for diagnostic spectral features. We confirm a large variety of spectral behaviors for these objects as their spectra are extended into the near-infrared, including the identification of weak absorption bands, mainly of the 0.9 micron band tentatively attributed to orthopyroxene, and of the 0.43 micron band that may be associated to chlorites and Mg-rich serpentines or pyroxene minerals such us pigeonite or augite. A comparison with previously published data indicates that the surfaces of several asteroids belonging to the M-class may vary significantly. We attempt to constrain the asteroid surface compositions of our sample by looking for meteorite spectral analogues in the RELAB database and by modelling with geographical mixtures of selected meteorites/minerals. We confirm that iron meteorites, pallasites, and enstatite chondrites are the best matches to most objects in our sample, as suggested for M-type asteroids. The presence of subtle absorption features on several asteroids confirms that not all objects defined by the Tholen M-class have a pure metallic composition.
We present reflected light spectral observations from 0.4 to 2.5 micron of 24 asteroids chosen from the population of asteroids initially classified as Tholen X-type objects (Tholen, 1984). The X complex in the Tholen taxonomy comprises the E, M and P classes which have very different inferred mineralogies but which are spectrally similar to each other, with featureless spectra in visible wavelengths. The data were obtained during several observing runs in the 2004-2007 years at the NTT, TNG and IRTF telescopes. We find a large variety of near-infrared spectral behaviors within the X class, and we identify weak absorption bands in spectra of 11 asteroids. Our spectra, together with albedos published by Tedesco et al. (2002), can be used to suggest new Tholen classifications for these objects. In order to constrain the possible composition of these asteroids, we perform a least-squares search through the RELAB spectral database. Many of the best fits are consistent with meteorite analogue materials suggested in the published literature. In fact, we find that 7 of the new M-types can be fit with metallic iron (or pallasite) materials, and that the low albedo C/P-type asteroids are best fitted with CM meteorites, some of which have been subjected to heating episodes or laser irradiation. Finally, we consider and analyse the sample of the X-type asteroids we have when we combine the present observations with previously published observations for a total of 72 bodies.
We present a new classification of families identified among the population of high-inclination asteroids. We computed synthetic proper elements for a sample of 18,560 numbered and multi-opposition objects having sine of proper inclination greater than 0.295. We considered three zones at different heliocentric distances (inner, intermediate and outer region) and used the standard approach based on the Hierarchical Clustering Method (HCM) to identify families in each zone. In doing so, we used slightly different approach with respect to previously published methodologies, to achieve a more reliable and robust classification. We also used available SDSS color data to improve membership and identify likely family interlopers. We found a total of 38 families, as well as a significant number of clumps and clusters deserving further investigation.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا