Do you want to publish a course? Click here

Stabbing Rectangles by Line Segments - How Decomposition Reduces the Shallow-Cell Complexity

67   0   0.0 ( 0 )
 Added by Krzysztof Fleszar
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

We initiate the study of the following natural geometric optimization problem. The input is a set of axis-aligned rectangles in the plane. The objective is to find a set of horizontal line segments of minimum total length so that every rectangle is stabbed by some line segment. A line segment stabs a rectangle if it intersects its left and its right boundary. The problem, which we call Stabbing, can be motivated by a resource allocation problem and has applications in geometric network design. To the best of our knowledge, only special cases of this problem have been considered so far. Stabbing is a weighted geometric set cover problem, which we show to be NP-hard. A constrained variant of Stabbing turns out to be even APX-hard. While for general set cover the best possible approximation ratio is $Theta(log n)$, it is an important field in geometric approximation algorithms to obtain better ratios for geometric set cover problems. Chan et al. [SODA12] generalize earlier results by Varadarajan [STOC10] to obtain sub-logarithmic performances for a broad class of weighted geometric set cover instances that are characterized by having low shallow-cell complexity. The shallow-cell complexity of Stabbing instances, however, can be high so that a direct application of the framework of Chan et al. gives only logarithmic bounds. We still achieve a constant-factor approximation by decomposing general instances into what we call laminar instances that have low enough complexity. Our decomposition technique yields constant-factor approximations also for the variant where rectangles can be stabbed by horizontal and vertical segments and for two further geometric set cover problems.



rate research

Read More

It is known that for every dimension $dge 2$ and every $k<d$ there exists a constant $c_{d,k}>0$ such that for every $n$-point set $Xsubset mathbb R^d$ there exists a $k$-flat that intersects at least $c_{d,k} n^{d+1-k} - o(n^{d+1-k})$ of the $(d-k)$-dimensional simplices spanned by $X$. However, the optimal values of the constants $c_{d,k}$ are mostly unknown. The case $k=0$ (stabbing by a point) has received a great deal of attention. In this paper we focus on the case $k=1$ (stabbing by a line). Specifically, we try to determine the upper bounds yielded by two point sets, known as the stretched grid and the stretched diagonal. Even though the calculations are independent of $n$, they are still very complicated, so we resort to analytical and numerical software methods. We provide strong evidence that, surprisingly, for $d=4,5,6$ the stretched grid yields better bounds than the stretched diagonal (unlike for all cases $k=0$ and for the case $(d,k)=(3,1)$, in which both point sets yield the same bound). Our experiments indicate that the stretched grid yields $c_{4,1}leq 0.00457936$, $c_{5,1}leq 0.000405335$, and $c_{6,1}leq 0.0000291323$.
In their seminal work, Danzer (1956, 1986) and Stach{o} (1981) established that every set of pairwise intersecting disks in the plane can be stabbed by four points. However, both these proofs are non-constructive, at least in the sense that they do not seem to imply an efficient algorithm for finding the stabbing points, given such a set of disks $D$. Recently, Har-Peled etal (2018) presented a relatively simple linear-time algorithm for finding five points that stab $D$. We present an alternative proof (and the first in English) to the assertion that four points are sufficient to stab $D$. Moreover, our proof is constructive and provides a simple linear-time algorithm for finding the stabbing points. As a warmup, we present a nearly-trivial liner-time algorithm with an elementary proof for finding five points that stab $D$.
Given a planar straight-line graph $G=(V,E)$ in $mathbb{R}^2$, a emph{circumscribing polygon} of $G$ is a simple polygon $P$ whose vertex set is $V$, and every edge in $E$ is either an edge or an internal diagonal of $P$. A circumscribing polygon is a emph{polygonization} for $G$ if every edge in $E$ is an edge of $P$. We prove that every arrangement of $n$ disjoint line segments in the plane has a subset of size $Omega(sqrt{n})$ that admits a circumscribing polygon, which is the first improvement on this bound in 20 years. We explore relations between circumscribing polygons and other problems in combinatorial geometry, and generalizations to $mathbb{R}^3$. We show that it is NP-complete to decide whether a given graph $G$ admits a circumscribing polygon, even if $G$ is 2-regular. Settling a 30-year old conjecture by Rappaport, we also show that it is NP-complete to determine whether a geometric matching admits a polygonization.
We provide the solution for a fundamental problem of geometric optimization by giving a complete characterization of worst-case optimal disk coverings of rectangles: For any $lambdageq 1$, the critical covering area $A^*(lambda)$ is the minimum value for which any set of disks with total area at least $A^*(lambda)$ can cover a rectangle of dimensions $lambdatimes 1$. We show that there is a threshold value $lambda_2 = sqrt{sqrt{7}/2 - 1/4} approx 1.035797ldots$, such that for $lambda<lambda_2$ the critical covering area $A^*(lambda)$ is $A^*(lambda)=3pileft(frac{lambda^2}{16} +frac{5}{32} + frac{9}{256lambda^2}right)$, and for $lambdageq lambda_2$, the critical area is $A^*(lambda)=pi(lambda^2+2)/4$; these values are tight. For the special case $lambda=1$, i.e., for covering a unit square, the critical covering area is $frac{195pi}{256}approx 2.39301ldots$. The proof uses a careful combination of manual and automatic analysis, demonstrating the power of the employed interval arithmetic technique.
Suppose we have an arrangement $mathcal{A}$ of $n$ geometric objects $x_1, dots, x_n subseteq mathbb{R}^2$ in the plane, with a distinguished point $p_i$ in each object $x_i$. The generalized transmission graph of $mathcal{A}$ has vertex set ${x_1, dots, x_n}$ and a directed edge $x_ix_j$ if and only if $p_j in x_i$. Generalized transmission graphs provide a generalized model of the connectivity in networks of directional antennas. The complexity class $exists mathbb{R}$ contains all problems that can be reduced in polynomial time to an existential sentence of the form $exists x_1, dots, x_n: phi(x_1,dots, x_n)$, where $x_1,dots, x_n$ range over $mathbb{R}$ and $phi$ is a propositional formula with signature $(+, -, cdot, 0, 1)$. The class $exists mathbb{R}$ aims to capture the complexity of the existential theory of the reals. It lies between $mathbf{NP}$ and $mathbf{PSPACE}$. Many geometric decision problems, such as recognition of disk graphs and of intersection graphs of lines, are complete for $exists mathbb{R}$. Continuing this line of research, we show that the recognition problem of generalized transmission graphs of line segments and of circular sectors is hard for $exists mathbb{R}$. As far as we know, this constitutes the first such result for a class of directed graphs.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا