Do you want to publish a course? Click here

Phase-field modeling of non-isothermal grain coalescence in the unconventional sintering techniques

74   0   0.0 ( 0 )
 Added by Yangyiwei Yang
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

A thermodynamically consistent phase-field model is developed to study the non-isothermal grain coalescence during the sintering process, with a potential application to the simulation in unconventional sintering techniques, e.g. spark plasma sintering, field-assisted sintering, and selective laser sintering, where non-equilibrium and high temperature gradient exist. In the model, order parameters are adopted to represent the bulk and atmosphere/pore region, as well as the crystallographic orientations. Based on the entropy analysis, the temperature-dependent free energy density is developed, which includes contributions from the internal energy (induced by the change of temperature and order parameters) and the order parameter related configurational entropy. The temperature-dependent model parameters are determined by using the experimental data of surface and grain boundary energies and interface width. From laws of thermodynamics, the kinetics for the order parameters and the order-parameter-coupled heat transfer are derived. The model is numerically implemented by the finite element method. Grain coalescence from two identical particles shows that non-isothermal condition leads to the unsymmetric morphology and curved grain boundary due to the gradients of on-site surface and grain-boundary energies induced by the local temperature inhomogeneity. More simulations on the non-isothermal grain coalescence from two non-identical and multiple particles present the temporal evolution of grain shrinkage/growth, neck growth, and porosity, demonstrating the capability and versatility of the model. It is anticipated that the work could provide a contribution to the research community of unconventional sintering techniques that can be used to model the non-isothermal related microstructural features.



rate research

Read More

236 - Charles Mani`ere 2020
Volume shrinkage, grain growth, and their interaction are major events occurring during free sintering of ceramics. A high temperature sintering dilatometry curve is influenced by these both phenomena. It is shown that the continuum theory of sintering can be utilized in the format enabling the extraction of the maximum amount of information on the densification and grain growth kinetics based on a simple dilatometry test. We present here the capability of such a fast approach (Dilatometry based Grain growth Assessment DGA) utilized for the modeling of sintering and grain growth of zirconia.
A numerical model able to simulate solid-state constrained sintering is presented. The model couples an existing kinetic Monte Carlo (kMC) model for free sintering with a finite element model (FEM) for calculating stresses on a microstructural level. The microstructural response to the local stress as well as the FEM calculation of the stress field from the microstructural evolution is discussed. The sintering behavior of a sample constrained by a rigid substrate is simulated. The constrained sintering results in a larger number of pores near the substrate, as well as anisotropic sintering shrinkage, with significantly enhanced strain in the central upper part of the sample surface, and minimal strain at the edges near the substrate. All these features have also previously been observed experimentally.
148 - Gyula I. Toth 2016
In this paper general dynamic equations describing the time evolution of isothermal quasi-incompressible multicomponent liquids are derived in the framework of the classical Ginzburg-Landau theory of first order phase transformations. Based on the fundamental {equations of continuum mechanics}, a general convection-diffusion dynamics is set up first for compressible liquids. The constitutive relations for the diffusion fluxes and the capillary stress are determined in the framework of gradient theories. {Next the general definition of incompressibility is given}, which is taken into account {in the derivation} by using the Lagrange multiplier method. To validate the theory, the dynamic equations are solved numerically for the quaternary quasi-incompressible Cahn-Hilliard system. It is demonstrated that variable density (i) has no effect on equilibrium (in case of a suitably constructed free energy functional), {and (ii) can} influence non-equilibrium pattern formation significantly.
339 - Saryu Fensin 2010
We describe a molecular dynamics framework for the direct calculation of the short-ranged structural forces underlying grain-boundary premelting and grain-coalescence in solidification. The method is applied in a comparative study of (i) a Sigma 9 <115> 120 degress twist and (ii) a Sigma 9 <110> {411} symmetric tilt boundary in a classical embedded-atom model of elemental Ni. Although both boundaries feature highly disordered structures near the melting point, the nature of the temperature dependence of the width of the disordered regions in these boundaries is qualitatively different. The former boundary displays behavior consistent with a logarithmically diverging premelted layer thickness as the melting temperature is approached from below, while the latter displays behavior featuring a finite grain-boundary width at the melting point. It is demonstrated that both types of behavior can be quantitatively described within a sharp-interface thermodynamic formalism involving a width-dependent interfacial free energy, referred to as the disjoining potential. The disjoining potential for boundary (i) is calculated to display a monotonic exponential dependence on width, while that of boundary (ii) features a weak attractive minimum. The results of this work are discussed in relation to recent simulation and theoretical studies of the thermodynamic forces underlying grain-boundary premelting.
We report a kinetic Monte Carlo modeling study of nanocrystal layer sintering. Features that are of interest for the dynamics of the layer as a whole, especially the morphology of the evolving structure, are considered. It is found that the kinetics of sintering is not entirely a local process, with the layer morphology affected by the kinetics in a larger than few-particle neighborhood. Consideration of a single layer of particles makes the numerics manageable and allows visualization of the results, as well as numerical simulations of several realizations for statistical averaging of properties of interest. We identify optimal regimes for sintering, considering several particle size distributions and temperature control protocols.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا